• Title/Summary/Keyword: surface wave velocity

Search Result 604, Processing Time 0.027 seconds

Subsurface Geological Structure Using Shallow Seismic Reflection Survey (반사법 탄성파 탐사를 이용한 천부 지질 구조)

  • Kim Gyu-Han;Kong Young-Sae;Oh Jinyong;Lee Jung-Mo
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.1
    • /
    • pp.8-16
    • /
    • 1999
  • In terms of high resolution, seismic reflection survey is by far the most significant geophysical method applied to define subsurface structure. In shallow seismic reflection survey, it is, however, difficult to obtain high resolution image due to both the wave attenuation in the unconsolidated layer and the existence of source-generated surface waves Therefore, when collecting data, it is imperative to select proper equipments and choose optimum field data acquisition parameters for acquiring high S/N data. In this survey, a small size hammer was used as a low energy source and 40-Hz vertical geophones were used as receivers. Trigger signal was obtained from the hammer starter attached in the aluminum plate and thus it was possible to control the source onset time for the vertical stack. During the field work, a modified standard CMP technique was introduced to achieve the many-fold CMP data effectively. Data processing was conducted by the 'Seismic Unix' which is mounted on PC with a Linux operating system. The main distinctions were the emphasis and detail placed on near-surface velocity analysis and the extra care exercised in muting.

  • PDF

Solitary Wave-like Ship Induced Waves and Its Associated Currents in a Water Channel of Narrow Width (협수로에서 생성되는 고립파 형태의 항주파와 항주파류)

  • Cho, Yong Jun;Choi, Han Rim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.4
    • /
    • pp.202-216
    • /
    • 2015
  • In the narrow water channel, which has been frequently deployed in the artificial canal in the South Korea due to the lack of available land, solitary wave type ship induced waves can occur. In order to test this hypothetical view, we carried out the numerical simulation. Numerical model consists of Navier-Stokes Equations and VOF, and the verification is implemented using the data by PIANC (1987) and the analytical model derived in this study. It was shown that numerically simulated front wave height are much larger than the one by PIANC (1987), and the fluctuation of free surface near the channel bank persists much longer (around 20s). For the case of stern waves, numerically simulated wave height are somewhat smaller than the data by PIANC (1987). These results seriously deviates from the general characteristics of ship induced waves observed in the wide water channels, and leads us to conclude that ship induced waves is severely affected by the width of water channel. It was also shown that the currents from the channel banks toward a ship, and currents from the ship toward the channel banks are alternatively occurring due to reflection at the channel banks. The velocity of currents reaches its maximum at 0.90 m/s, and these values are sustained through the entire depth. which implies that severe scourings at the channel bottom can be underway.

Characteristics of Elastic Waves in Sand-Silt Mixtures due to Freezing (동결에 따른 모래-실트 혼합토의 탄성파 특성)

  • Park, Junghee;Hong, Seungseo;Kim, Youngseok;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.27-36
    • /
    • 2012
  • The water in surface of the earth is frozen under freezing point. The freezing phenomenon, which causes the volume change of soils, affects on the behavior of soils and causes the significant damage on the geotechnical structures. The purpose of this study is to investigate the characteristics of elastic waves in sand-silt mixtures using small size freezing cells, which reflect the frozen ground condition due to temperature change. Experiments are carried out in a nylon cell designed to freeze soils from top to bottom. Bender elements and piezo disk elements are used as the shear and compressional wave transducers. Three pairs of bender elements and piezo disk elements are placed on three locations along the depth. The specimen, which is prepared by mixing sand and silt, is frozen in the refrigerator. The temperature of soils changes from $20^{\circ}C$ to $-10^{\circ}C$. The velocities, resonant frequencies and amplitudes of the shear and compressional waves are continuously measured. Experimental results show that the shear and compressional wave velocities and resonant frequencies increase dramatically near the freezing points. The amplitudes of shear and compressional waves show the different tendency. The dominant factors that affect on the shear wave velocity change from the effective stress to the ice bonding due to freezing. This study provides basic information about the characteristics of elastic waves due to the soil freezing.

Void Ratio Evaluation of Unsaturated Soils by Compressional and Shear Waves (압축파와 전단파를 이용한 불포화토의 간극비 산정)

  • Byun, Yong-Hoon;Cho, Se-Hyun;Yoon, Hyung-Koo;Choo, Yun-Wook;Kim, Dong-Su;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.41-51
    • /
    • 2012
  • Soils are commonly unsaturated in the near surface. The stiffness of soils is affected by the amount of air and water. The objective of this study is to evaluate the porosity of the unsaturated soils by using the elastic waves including compressional and shear waves. The elastic waves are measured at different degrees of saturation by controlling the matric suction. Thus, the unsaturated soils are characterized at different levels of the matric suction. Shear and compressional waves are measured by using the bender elements and the piezo disk elements, respectively. Both transducers are installed on the walls of the rectangular cell. The unsaturated soils are prepared by using uniform size sands and silts. Test results show that both compressional and shear wave velocities change according to the matric suction. The elastic modulus, the shear modulus, and the Poisson's ratio are estimated based on the measured elastic wave velocities. In addition, the void ratio of the unsaturated soils estimated using elastic wave velocities matches well with the volume based void ratio. This study demonstrates that the elastic waves can be effectively used for the characterization of unsaturated soils.

Comments on Seismicity and Crustal Structure of the Korean Peninsula (한반도의 지진활동과 지각구조)

  • Lee, Kie-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.256-267
    • /
    • 2010
  • Earthquakes in the Korean Peninsula occur along the faults formed and boundaries between major geological units ruptured due to violent tectonic activities during the Mesozoic. E-W and/or ENE-SSW compressive stress regime resulting from collisions between the Eurasian plate and neighbouring the Indian plate, the Pacific plate and the Philippine plate trigger Korean earthquakes of thrust faulting with predominant strike-slip components along the mostly NNE-SSW trending active faults. Seismicity of the Korean peninsula has been moderate to low during the past 20 centuries except for the period from the 15th to the 18th centuries of exceptionally high seismicity, showing the typical irregularity of intraplate seismicity. The structure of the Korean peninsula is rather homogeneous without the Conrad discontinuity sharply dividing the upper and lower crust. Lateral heterogeneities exist in the crust. The crust with an average thickness of about 33 km is thicker in the mountainous region than the plain due to the Airy-type isostatic equilibrium maintained in the peninsula. Crustal P-wave velocity with average of about 6.3 km/sec increases gradually from the near surface to the Moho. The upper mantle P-wave (Pn) velocity is about 7.8 km/sec.

Reduction Factor for the Site Coefficient of a Building built on a Poor-backfilled Embedded Foundation (뒷채움이 부실한 묻힌기초 위에 세워진 건축물의 지반증폭계수에 대한 저감계수)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • In this paper, the reduction factors to calculate the site coefficients of an embedded foundation are estimated, considering the effect of a poor backfill for the seismic design of a building built on an embedded foundation. This is determined by utilizing in-house finite element software, P3DASS, which has the capability of horizontal pseudo 3D seismic analysis with nonlinear soil. The 30m thick soil on stiff rock was assumed to be homogeneous, elastic, viscous and isotropic, and equivalent circular rigid foundations with radii of 10-70m were assumed to be embedded 0, 10, 20, and 30 m in the soil. Seismic analyses were performed with 7 bedrock earthquake records de-convoluted from the outcrop records; the scaling of the peak ground accelerations were to 0.1 g. The study results show that the site coefficients of a poor-backfilled foundation are gradually reduced as the foundation embedment ratio increases, except in the case of a small foundation embedded deeply in the weak soft soil. In addition, it was found that the deviation of the site coefficients due to the foundation size was not significant. Therefore, the typical reduction factors of an embedded foundation with poor backfill are proposed in terms of the shear wave velocity and site class. This is in order to find the site coefficients of an embedded foundation by multiplying the reduction factor by a site coefficient of a surface foundation specified in the design code. They can then be interpolated to determine the intermediate shear wave velocity.

Effects of thermal annealing of AlN thin films deposited on polycrystalline 3C-SiC buffer layer (다결정 3C-SiC 버퍼층위 증착된 AlN 박막의 열처리 효과)

  • Hong, Hoang-Si;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.112-112
    • /
    • 2009
  • In this study, the effect of a long post-deposition thermal annealing(600 and 1000 $^{\circ}C$) on the surface acoustic wave (SAW) properties of polycrystalline (poly) aluminum-nitride (AlN) thin films grown on a 3C-SiC buffer layer was investigates. The poly-AlN thin films with a (0002) preferred orientation were deposited on the substrates by using a pulsed reactive magnetron sputtering system. Experimental results show that the texture degree of AlN thin film was reduced along the increase in annealing temperature, which caused the decrease in the electromechanical coupling coefficient ($k^2$). The SAW velocity also was decreased slightly by the increase in root mean square (RMS) roughness over annealing temperature. However, the residual stress in films almost was not affect by thermal annealing process due to small lattice mismatch different and similar coefficient temperature expansion (CTE) between AlN and 3C-SiC. After the AlN film annealed at 1000 $^{\circ}C$, the insertion loss of an $IDT/AlN/3C-SiC/SiO_2/Si$ structure (-16.44 dB) was reduced by 8.79 dB in comparison with that of the as-deposited film (-25.23 dB). The improvement in the insertion loss of the film was fined according to the decrease in the grain size. The characteristics of AlN thin films were also evaluated using Fourier transform-infrared spectroscopy (FT-IR) spectra and X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) images.

  • PDF

Evaluation of Fatigue Damage of Metal Matrix Composite by LFB Acoustic Microscopy (Line-Focus-Beam 초음파 현미경을 이용한 금속복합재료의 피로손상에 관한 연구)

  • Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.2
    • /
    • pp.40-47
    • /
    • 1993
  • Composites composed of a precipitation harden 2124 alloy matrix reinforced by SiC whiskers, which are fabricated by powder metallugy, are suscepttible to fatigue damage due to the pile-up of moving dislocation and the microcrack initiation along SiC-Al interfaces, especially at the external surfaces of a body. The initial process, such as pile-up of dislocation or microcrack, that corresponds to the stage I during fatigue failure process are too small to be detected and characterized by conventional ultrasonic technique. This paper describes the applicability of an acoustic microscope with Line-Focus-Beam(LFB) lens of 225MHz to evaluate fatigue damage of SiC whiskers reinforced Al alloy. The specimens which were 6.6mm thick, 13mm wide, and 105mm long in the gage section were fatigued in tension-tension under load control. The velocity of leaky surface and leaky pseudosurface acoustic waves are obtained by FFT analysis technique from V(z) curve which is a record of output of piezoelectric transducer. These results are discussed with the change of number of fatigue cycles. The result obtained by acoustic microscope is compared with that by ultrasonic technique generated at 5MHz with conventional surface wave transducers.

  • PDF

Dynamic Response Analysis of Pipe Subjected to Underwater Explosion (수중폭발로 인한 파이프의 동적 응답해석)

  • Kim, Seongbeom;Lee, Kyungjae;Jung, Dongho;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.9-16
    • /
    • 2014
  • In recent years, the structural shock response to UNDEX (UNDerwater EXplosion) has been studied as much, or more, through numerical simulations than through testing for several reasons. Very high costs and sensitive environmental concerns have kept destructive underwater explosion testing to a minimum. Increase of simulation capabilities and sophisticated simulation tools has made numerical simulations more efficient analysis methods as well as more reliable testing aids. In this study, the main issue is the fluid-structure interaction. Here, appropriate relations between the acoustic pressure on the fluid surface and displacements on the structure surface are formed internally. The analysis was carried out using ABAQUS/Explicit and the results have been visualized in ABAQUS CAE. The shock loading history, acoustic pressure, stress of stand-off point, the velocity and strain energy time histories were presented.

Blast Modeling of Concrete Column Using PFC (PFC를 이용한 콘크리트기둥의 발파모델링)

  • Choi Byung-Hee;Yang Hyung-Sik;Ryu Chang-Ha
    • Explosives and Blasting
    • /
    • v.23 no.1
    • /
    • pp.47-54
    • /
    • 2005
  • An explosion modeling technique was developed by using the spherical discrete element code, $PFC^{3D}$, which can be used to model the dynamic stress wave propagation phenomenon. The modeling technique is simply based on an idea that the explosion pressure should be applied to a $PFC^{3D}$ particle assembly not in the form of an external force (body force), but in the form of a contact force (surface force). A test blast was conducted for a RC column, whose dimension was $600\times300\times1800$ in millimeters. The initial velocities of the surface movements were measured to be in the range of $14\~18\;m/s$ with the initiation times of $1.5\~2.0m$. Then the blasting procedure was simulated by using the modeling technique. The particle assembly representing the concrete was made of cement mortar and coarse aggregates, whose mirco-properties were obtained from the calibration processes. As a result, the modeling technique developed in this study made it possible for the burden to move with the velocity of $17\~24\;m/s$, which are slightly higher values compared to those of the test blast.