• 제목/요약/키워드: surface water flow

검색결과 1,806건 처리시간 0.026초

A Study on the Greenhouse Water Curtain System: Heat Transfer Characteristics

  • 손원명;한길영
    • 한국농공학회지
    • /
    • 제32권E호
    • /
    • pp.80-87
    • /
    • 1990
  • Energy balance equations Were developed to describe the heat transfer mechanisms in a double layer plastic greenhouse with a water curtain system. Heat transfer variables were determined by using various temperature data measured in a conventional prototype semicircular cross-section greenhouse over a range of water temperatures and water flow rates. The heat transfer coefficient between flowing water and greenhouse air was independent of water flow rates. But the heat transfer coefficient between water surface and the stagnant air space within the double plastic layer was dependent on water flow rates. Substituting the heat transfer coefficients, determined from the energy balance equations in the heat transfer equations, demonstrated various relationships among ambient air temperature, greenhouse air temperature, water temperature, and water flow rates. The heating benefits were linearly related to not only the inside and outside air temperatures but also to the water temperature. The energy conservation effects of the water curtain system were found even initial water temperatures were considerably lower than the greenhouse setting temperatures. Sensitivity analysis for heat transfer coefficients demonstrated that the heat transfer coefficient between greenhouse air and the stagnant air within the plastic layers was the most significant coefficient in the estimation of heating effects.

  • PDF

편마암-물 반응계에서 지하수의 지화학적 진화 및 이차광물 생성에 관한 반응경로 모델링 (Reaction Path Modelling on Geochemical Evolution of Groundwater and Formation of Secondary Minerals in Water-Gneiss Reaction System)

  • 정찬호;김천수;김통권;김수진
    • 한국광물학회지
    • /
    • 제10권1호
    • /
    • pp.33-44
    • /
    • 1997
  • The reaction path of water-gneiss in 200m borehole at the Soorichi site of Yugu Myeon, Chungnam was simulated by the EQ3NR/EQ6 program. Mineral composition of borehole core and fracture-filling minerals, and chemical composition of groundwater was published by authors. In this study, chemical evolution of groundwater and formation of secondary minerals in water-gneiss system was modelled on the basis of published results. The surface water was used as a starting solution for reaction. Input parameters for modelling such as mineral assemblage and their volume percent, chemical composition of mineral phases, water/rock ratio reactive surface area, dissolution rates of mineral phases were determined by experimental measurement and model fit. EQ6 modelling of the reaction path in water-gneiss system has been carried out by a flow-centered flow through open system which can be considered as a suitable option for fracture flow of groundwater. The modelling results show that reaction time of 133 years is required to reach equilibrium state in water-gneiss system, and evolution of present groundwater will continue to pH 9.45 and higher na ion concentration. The secondary minerals formed from equeous phase are kaolinite, smectite, saponite, muscovite, mesolite, celadonite, microcline and calcite with uincreasing time. Modeling results are comparatively well fitted to pH and chemical composition of borehole groudwater, secondary minerals identified and tritium age of groundwater. The EQ6 modelling results are dependent on reliability of input parameters: water-rock ratio, effective reaction surface area and dissolution rates of mineral phases, which are difficult parameters to be measured.

  • PDF

오염하천의 정화를 위한 파일럿 규모의 인공습지 적용 (Performance Study on Pilot-scale Constructed Wetlands in order to Restore Contaminated Stream)

  • 김승준;최용수;배우근
    • 한국물환경학회지
    • /
    • 제22권3호
    • /
    • pp.546-556
    • /
    • 2006
  • The purpose of this study is to improve the polluted stream water quality by pilot-scale five different constructed wetlands (CWs). Cell 1 to 3 are newly designed 2SFCW (Surface-subsurface flow CW) with 1 to 3 flow shifters (FS) in the middle of the wetland system. Cell 4 and 5 are control CW (CCW), but Cell 5 is the same type as Cell 3. The FS, which converts the route of surface and subsurface flow between two wetlands connected in series, was able to enhance the treatability of TN via nitrification and denitrification and of SS due to filtration and sedimentation. The void fraction and dispersion number of Cell 1, 2 and 3 obtained from the RTD analysis were found to be 0.73 and 0.17, respectively. COD and TP removal efficiencies of Cell 1 to 3 were similar to that of Cell 4 and 5. SS removal efficiencies of Cell 1 to 3 and 5 with FS were 5-10% higher than that of Cell 4 without FS. TN removal efficiencies of Cell 1 to 3 were 3-14% higher than that of Cell 4 and 5. The average $R^2$ values of COD, SS, TN and TP obtained from nonlinear regression analysis were similar to the results of other researchers.

방류수의 수위 및 유량 분석을 통한 해양 소수력 성능평가 (Performance Evaluation of Ocean Small Hydropower Plant by Analyzing Water Level and Flow Rate of Circulating Water)

  • 강금석;김지영;유무성
    • 신재생에너지
    • /
    • 제5권3호
    • /
    • pp.32-39
    • /
    • 2009
  • The Samcheonpo ocean small hydropower plant (SHP) has a special feature of using marginal hydraulic head of circulating water system of fossil fuel power plant as a power source and having the characteristics of general hydropower generation and tidal power generation as well. Also, it contributes to reducing green house gases and developing clean energy source by recycling circulating water energy otherwise dissipated into the ocean. The efficiency of small hydropower plant is directly affected by effective head and flow rate of discharged water. Therefore, the efficiency characteristics of ocean hydropower plant are analyzed with the variation of water level and flow rate of discharged water, which is based on the accumulated operation data of the Samcheonpo hydropower plant. After the start of small hydropower plant operation, definite rise of water level was observed. As a result of flow pattern change from free flow to submerged flow, the instability of water surface in overall open channel is increased but it doesn't reach the extent of overflowing channel or having an effect on circulation system. Performance evaluation result shows that the generating power and efficiency of small hydropower exceeds design requirements in all conditions. Analysis results of CWP's water flow rate verify that the amount of flowing water is measured less and the highest efficiency of small hydropower plant is achieved when the effective head has its maximum value. In conclusion, efficiency curve derived from water flow rate considering tidal level shows the best fitting result with design criteria curve and it is verified that overall efficiency of hydropower system is satisfactory.

  • PDF

지표수-지하수 상호관계에 따른 지하수 유동분석 (Groundwater Movement Analysis according to Groundwater-Surface Water Interaction)

  • 안승섭;박동일;정도준;석동기
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1945-1949
    • /
    • 2009
  • It is fact that many research is advanced about management and security of water resources according to serious problem which is raising its head that conservancy and management of water resources development of population and industry. Ground water of water resources is the source of water resources security with surface water, so it have to be continuous exploitation and research however, until now it researched in separate way from surface water, and it become connect each other for the research in actual condition in recent times. The research analyzed the recharge at the SWAT model, interpreted by used GMS/MODFLOW model for ground water flow change.

  • PDF

윤활액이 담지된 나노다공성 표면의 최신 응용분야 (Recent applications of lubricant-impregnated nanoporous surface : A Review)

  • 한경완;배기창;이정훈
    • 한국표면공학회지
    • /
    • 제56권1호
    • /
    • pp.1-11
    • /
    • 2023
  • Lubricant-impregnated nanoporous surfaces (LIS), which is created by impregnating water-immiscible oil into nanoporous surface structure, have been explored considering wide range of application fields. Due to the lubricant impregnated in nanoporous structure, the surface shows extreme de-wetting with a high mobility of water droplets, so that various functionalities can be realized. The lubricant layer inhibits the contact of corrosive media to porous structure as well as metal substrate, thus the surface improves the corrosion resistance. The water on the surface freeze without any contact to solid porous structure, showing a low ice adhesion for de-icing an anti-icing. The extremely high mobility of water droplets on lubricant-impregnated porous surfaces also contributes the enhancement of condensation heat transfer as well as water harvesting from fog and moisture. Moreover, the bacteria adhesion on metal surface forming biofilms causing serious hygiene issues can be inhibited on the lubricantimpregnated surfaces. Despite of such superior functionalities, the lubricant-impregnated porous surface has a limitation of lubricant depletion by external flow of fluids. Therefore, extensive efforts to improve the durability of lubricant-impregnated surface are required for practical applications.

CIP-CSL2법에 의한 다상유동 경계포획 시뮬레이션 (Interface-tracking simulation of multi-phase flow using CIP-CSL2 scheme)

  • 임효남
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.25-30
    • /
    • 2011
  • In this study, it is performed numerical simulation on multi-phase flow by means of CIP-CSI2 scheme. It is applied In a two-phase free surface flow problem at a high density ratio equivalent to that of an air-water system, for examining the computational capability. The method that is being developed and improved is a CIP(Constrained Interpolation Profile) and CSL2(Conservative Semi-Lagrangian) based Cartesian Grid Method.

  • PDF

Modeling of flux enhancement in presence of concentration polarization by pressure pulsation during laminar cross flow ultrafiltration

  • Kumar, Kamal;De, Sirshendu
    • Membrane and Water Treatment
    • /
    • 제1권4호
    • /
    • pp.253-271
    • /
    • 2010
  • A theoretical study for the flux enhancement by pulsation of transmembrane pressure is presented for osmotic pressure controlled ultrafiltration under laminar flow regime. The transient velocity profile is solved analytically using Green's function method. Time dependent convective diffusive equation is solved to quantify the membrane surface concentration and the permeate flux, numerically. The effects of the amplitude and frequency of pulsation on flux, surface concentration and observed retention are studied.

배수성 콘크리트 포장 공법 (Drainage concrete pavement work)

  • 황익현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.861-868
    • /
    • 1999
  • Drainage concrete pavement, unlike water permeable concrete pavement, is to preclude the pavement from overflowing with water, such as rain water, from infiltrating into earth by placing a border in the middle layer which makes water to flow through the surface of the border to the conduit. Drainage concrete pavement enhances car wheel resistance to slippery and wet road surface and imbibes noise caused by friction on the road. Also, by using pigment, it adds to the beauty of the environment. Drainage concrete pavement can be used for sidewalks, roadways, parking lots and expressways.

  • PDF

수직 진동을 이용한 가열된 고체표면 위 증발하는 액적의 내부유동 제어연구 (Study of the Internal Flow and Evaporation Characteristic Inside a Water Droplet on a Vertical Vibrating Hydrophobic Surface)

  • 박창석;임희창
    • 대한기계학회논문집B
    • /
    • 제41권1호
    • /
    • pp.37-46
    • /
    • 2017
  • 가열된 표면에서의 액적은 일반적으로 내부에 마랑고니 유동이 발생하고, 이는 불균일한 침전물 패턴 형상을 구성하게 된다. 본 연구는 마랑고니 유동을 가시화하고, 수직진동을 사용해서 이를 제어하는 것을 주 목적으로 한다. 액적이 증발하는 동안, 액적의 접촉각 변화와 부피변화를 실험적으로 알 수 있었고, PIV(Particle Image Velocimetry) 실험 장치를 이용하여, 평판 온도별 마랑고니 유동의 내부 유동의 흐름을 가시화하였다. 그리고 평판에 각 주파수별 수직진동을 가해주는 실험을 진행하여, 그 결과 마랑고니 유동의 유동 방향과 수직진동의 유동 방향이 서로 반대인 것을 확인할 수 있었다. 마지막으로 증발하는 액적에 수직진동을 가해줌으로써, 액적의 하단부분에서 내부유동의 흐름변화를 관찰하였다. 마랑고니유동에 의해 발생하는 내부유동 방향과 수직진동으로 발생하는 내부유동의 방향이 서로 반대 방향이므로 가열된 평판에 진동을 가해주었을 때 액적 내부유동의 흐름이 변화가 발생하였고, 이는 곧 불균일한 침전물 패턴이 억제된 것을 증발 후 침전물의 패턴형상을 통해 확인할 수 있었다.