• Title/Summary/Keyword: surface state

Search Result 3,696, Processing Time 0.029 seconds

Variation of State Boundary Surface of Remolded Weathered Mudstone soil by spacing ratio (공간비에 의한 재성형 이암 풍화토의 상태경계면 변화)

  • Kim, Ki-Young;Jeon, Je-Sung;Lee, Jong-Wook;Kim, Je-Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1095-1099
    • /
    • 2008
  • Critical state theory involves two state boundary surface. One is Roscoe surface and the other is Hvorslev surface. The shape of these boundary surface was changed because of several parameters : Critical state constant(M), spacing ratio (r) and critical state pore pressure coefficient($\wedge$). As these constants make difference to each model and the way of solution, they may affect the shape of state boundary surface. Specially, spacing ratio (r) is important. On this study, triaxial compression test was performed using remolded weathered mudstone soil and investigated variation of state boundary surface because of spacing ratio. In the results of prediction, critical state point was located highly and the shape of boundary surface was changed more tightly curve as decreasing spacing ratio.

  • PDF

Numerical Analysis of Free-Surface Flows Using Improved Adaptable Surface Particle Method Based on Grid System (개선된 격자기반 적합 표면입자법을 이용한 자유표면유동 수치해석)

  • Shin, Young-Seop
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.90-96
    • /
    • 2021
  • In this study, the method of determining the state of grid points in the adaptable surface particle method based on grid system developed as a free-surface tracing method was improved. The adaptable surface particle method is a method of determining the state of the grid point according to the shape of the free-surface and obtaining the intersection of the given free-surface and grid line where the state of the grid point changes. It is difficult to determine the state of grid points in the event of rapid flow, such as collision or separation of free-surfaces, and this study suggests a method for determining the state of current grid points using the state of surrounding grid points where the state of grid point are known. A grid layer value was assigned sequentially to a grid away from the free-surface, centering on the boundary cell where the free-surface exists, to identify the connection information that the grid was separated from the free-surface, and to determine the state of the grid point sequentially from a grid away from the free-surface to a grid close to the free-surface. To verify the improved method, a numerical analysis was made on the problem of dam break in which a sudden collision of free-surface occurred and the results were compared, and the results were relatively reasonable.

Calculation on Surface Electronic State of $TiO_2$ Electrode (TiO2 전극 표면의 전자상태 계산)

  • Lee, Dong-Yoon;Lee, Won-Jae;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.259-262
    • /
    • 2003
  • The surface electronic state of rutile $TiO_2$, which is an oxide semiconductor and has a wide band gap of 3.1 $\sim$ 3.5 eV, was calculated by DV-$X_{\alpha}$ method, which is a sort of the first principle molecular orbital method and uses Hartre-Fock-Slater approximation. The $[Ti_{15}O_{56}]^{-52}$ cluster model was used for the calculation of bulk state and the $[OTi_{11}O_{34}]^{-24}$ model for the surface state calculation. After calculations, the energy level diagrams and the deformation electron density distribution map were compared in both models. As results, it was identified that the surface energy levels are found between the valence and conduction band of bulk $TiO_2$ on the surface area. The energy values of these surface-induced levels are lower than conduction band of bulk $TiO_2$ by 0.1 $\sim$ 1 eV. From this fact, it is expected that the surface energy levels act as donar levels in n-type semiconductor.

  • PDF

SWR as Tool for Determination of the Surface Magnetic Anisotropy Energy Constant

  • Maksymowicz, L.J.;Lubecka, M.;Jablonski, R.
    • Journal of Magnetics
    • /
    • v.3 no.4
    • /
    • pp.105-111
    • /
    • 1998
  • The low energy excitations of spin waves (SWR) in thin films can be used for determination of the surface anisotropy constant and the nonhomogeneities of magnetization in the close-to-surface layer. The dispersion relation in SWR is sensitive on the geometry of experiment. We report on temperature dependence of surface magnetic anisotropy energy constant in magnetic semiconductor thin films of$ CdCr_{2-2x}In_{2x}Se_4$ at spin glass state. Samples were deposited by rf sputtering technique on Corning glass substrate in controlled temperature conditions. Coexistence of the infinite ferromagnetic network (IFN) and finite spin slusters (FSC) in spin glass state (SG) is know phenomena. Some behavior typical for long range magnetic ordering is expected in samples at SG state. The spin wave resonance experiment (microwave spectrometer at X-band) with excited surface modes was applied to describe the energy state of surface spins. We determined the surface magnetic anisotropy energy constant versus temperature using the surface inhomogeneities model of magnetic thin films. It was found that two components contribute to the surface magnetic anisotropy energy. One originates from the exchange interaction term due to the lack of translation symmetry for surface spin as well as from the originates from the exchange interaction term due to the lack of translation symmetry for surface spin as well as from the stray field of the surface roughness. The second one comes from the demagnetizing field of close-to surface layer with grad M. Both term linearly decrease when temperature is increased from 5 to 123 K, but dominant contribution is from the first component.

  • PDF

A New Model and Equation Derived From Surface Tension and Cohesive Energy Density of Coagulation Bath Solvents for Effective Precipitation Polymerization of Acrylonitrile

  • Zhou, You;Xue, Liwei;Yi, Kai;Zhang, Li;Ryu, Seung Kon;Jin, Ri Guang
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.182-186
    • /
    • 2012
  • A new model and resultant equation for the coagulation of acrylonitrile monomers in precipitation polymerization are suggested in consideration of the surface tension (${\gamma}$) and cohesive energy density ($E_{CED}$). The equation was proven to be quite favorable by considering figure fittings from known surface tensions and cohesive energy densities of certain organic solvents. The relationship between scale value of surface tension (${\gamma}$/M) and cohesive energy density of monomers can be obtained by changing the coagulation bath component for effective precipitation polymerization of acrylonitrile in wet spinning.

Analysis of Sliding Wear Mode on Hardened Steel by X-ray Diffraction Technique (X선회절에 의한 철강재료의 미Rm럼 마모형태 해석에 관한 연구(고경도강에의 적용))

  • 이한영
    • Tribology and Lubricants
    • /
    • v.20 no.1
    • /
    • pp.7-13
    • /
    • 2004
  • High strength steels are widely used as tribo-materials in the field. Previous study revealed that for mild steel, the states of strain on the worn surface measured by X-ray diffraction has a good relationship with the state of wear. The objective of this study is to identify the relationship between the state of strain on the worn surface and the state of wear in high strength steels. Sliding wear tests were carried out using several hardened steels. X-ray diffraction tests were conducted to analyze the state of strain on the worn surface during wear. The experimental results indicated that the state of strain on worn surface in the hardened steel shows the same tendency as in the mild steel. It is clear that change of half value width on the worn surface as a function of sliding speeds is broadly similar in shape to wear characteristics curve and its magnitude has a good relationship with the wear rate at two different wear modes in the hardened steel.

An improved response surface method for reliability analysis of structures

  • Basaga, Hasan Basri;Bayraktar, Alemdar;Kaymaz, Irfan
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.175-189
    • /
    • 2012
  • This paper presents an algorithm for structural reliability with the response surface method. For this aim, an approach with three stages is proposed named as improved response surface method. In the algorithm, firstly, a quadratic approximate function is formed and design point is determined with First Order Reliability Method. Secondly, a point close to the exact limit state function is searched using the design point. Lastly, vector projected method is used to generate the sample points and Second Order Reliability Method is performed to obtain reliability index and probability of failure. Five numerical examples are selected to illustrate the proposed algorithm. The limit state functions of three examples (cantilever beam, highly nonlinear limit state function and dynamic response of an oscillator) are defined explicitly and the others (frame and truss structures) are defined implicitly. ANSYS finite element program is utilized to obtain the response of the structures which are needed in the reliability analysis of implicit limit state functions. The results (reliability index, probability of failure and limit state function evaluations) obtained from the improved response surface are compared with those of Monte Carlo Simulation, First Order Reliability Method, Second Order Reliability Method and Classical Response Surface Method. According to the results, proposed algorithm gives better results for both reliability index and limit state function evaluations.

An efficient response surface method considering the nonlinear trend of the actual limit state

  • Zhao, Weitao;Qiu, Zhiping;Yang, Yi
    • Structural Engineering and Mechanics
    • /
    • v.47 no.1
    • /
    • pp.45-58
    • /
    • 2013
  • In structural reliability analysis, the response surface method is a powerful method to evaluate the probability of failure. However, the location of experimental points used to form a response surface function must be selected in a judicious way. It is necessary for the highly nonlinear limit state functions to consider the design point and the nonlinear trend of the limit state, because both of them influence the probability of failure. In this paper, in order to approximate the actual limit state more accurately, experimental points are selected close to the design point and the actual limit state, and consider the nonlinear trend of the limit state. Linear, quadratic and cubic polynomials without mixed terms are utilized to approximate the actual limit state. The direct Monte Carlo simulation on the approximated limit state is carried out to determine the probability of failure. Four examples are given to demonstrate the efficiency and the accuracy of the proposed method for both numerical and implicit limit states.

Surface Reconstruction on Hydrogen Covered W(011) (수소가 흡착된 W(011) 표면의 재구성)

  • 김희봉;최원국;홍사용;황정남;정광호
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.83-87
    • /
    • 1992
  • Rencently, angle-resolved ultraviolet photoemission measurements of the Fermi surface contours for Mo(011) and W(011) are reported. The electron contour of W(011) is expanded upon hydrogen adsorption, which implies that the surface states consisting of electron pockets are shifted to higher binding energy. This phenomena can be explained by the band flattening. We explained here the reconstruction of W(011) surface induced by adsorption of hydrogen in terms of band flattening of surface states with a combination of S. E. Trullinger long range dipole-dipole interaction force and Kohn anomaly.

  • PDF