• 제목/요약/키워드: surface seawater

검색결과 551건 처리시간 0.026초

해수소통구를 구비한 진동수주형 파력발전구조물 내에서 공기흐름과 구조물 주변에서 파랑특성에 관한 3차원수치해석(규칙파의 경우) (3-Dimensional Numerical Analysis of Air Flow inside OWC Type WEC Equipped with Channel of Seawater Exchange and Wave Characteristics around Its Structure (in Case of Regular Waves))

  • 이광호;이준형;정익한;김도삼
    • 한국해안·해양공학회논문집
    • /
    • 제30권6호
    • /
    • pp.242-252
    • /
    • 2018
  • 진동수주형의 파력발전구조물(OWC-WEC)는 파랑에너지 흡수장치 중에 가장 효율적인 것으로 알려져 있다. 이 장치는 공기실 내부에서 해수면의 상 하운동을 공기흐름으로 변환하고, Wells 터빈으로 대표되는 터빈의 구동력으로부터 전기에너지가 생산된다. 따라서, 높은 전기에너지를 얻기 위해서는 공기실 내부에서의 수면변동에 피스톤모드의 공진을 유발시켜 수면진동을 증폭시킬 필요가 있다. 본 연구에서는 해수소통구를 구비한 신형식의 OWC-WEC를 상정하고, 구조물에 의한 파랑변형, 공기실 내에서 수면변동과 노즐에서 공기유출속도 및 해수소통구에서 해수흐름속도를 수치해석적으로 상세히 평가한다. 수치해석모델은 Navier-Stokes solver의 혼상류해석기법에 기초한 공개 CFD code인 OLAFLOW 모델을 적용하며, 모델의 타당성을 검증하기 위하여 기존의 실험결과 및 수치해석결과와를 비교 논의한다. 본 연구의 범위 내에서 Ursell수가 커질수록 노즐에서 공기흐름속도가 증가하며, 공기실 내부에서 외부로 유출되는 공기속도가 외부에서 공기실 내부로 유입되는 공기속도보다 더 크다 등의 중요한 사실을 알 수 있었다.

내해수성 주입재 배합에 관한 실험적 연구 (A Experimental Study on the Seawater Attack Resistance of Grouting Mixtures)

  • 천병식;최동찬;김영훈;김진춘
    • 한국지반환경공학회 논문집
    • /
    • 제11권1호
    • /
    • pp.53-59
    • /
    • 2010
  • 해수 침적 조건에서 시멘트 수화물이 부식되는 화학적 열화과정은 콘크리트 구조물이나 주입공사 목적물에서 동일하다. 국내에서 사용되고 있는 MSG(Micro Silica Grouting)주입재는 실리카질 물질이 다량 함유된 혼합계 시멘트로서 분말도가 $8,000cm^2/g$ 이상으로 높기 때문에 수화활성도가 매우 크고, 고강도 및 고내구성을 특징으로 하며, $C_3A$ 함유량도 5% 이하로 내황산염시멘트 규격을 만족하는 내해수성 시멘트재로 평가된다. 따라서, 본 논문에서는 내해수성이 우수한 MSG와 국내에서 사용되고 있는 급결재를 조합하여 내해수성 특성을 실험적으로 평가하였다. 국내에서 일반적으로 규산계 고활성 급결재 또는 초속경시멘트계 무기질 급결재가 사용되고 있다. 이들 급결재와 MSG가 조합된 주입재의 호모겔 시편에 대해서 압축강도, 중량변화 및 길이변화 특성을 실험적으로 평가하여 내해수성이 우수한 주입재 조합을 제시하였다.

마산만의 하수기인 유기물 fecal sterol의 분포 (Distribution of sewage-derived organic matter using fecal sterol in Masan Bay, Korea)

  • 최민규;문효방;김상수;이윤
    • 한국환경과학회지
    • /
    • 제14권5호
    • /
    • pp.481-490
    • /
    • 2005
  • Surface sediments and seawater were sampled at Masan and Haengam Bays of Korea, to evaluate contamination by sewage-derived organic matter using fecal sterols, Six stream-water samples into Masan and Haengam Bays were also sampled. Total concentrations of eight sterols (coprostanol, epichloestanol, epicoprostanol, cholesterol, cholestanol, brassicasterol, stigmasterol and $\beta-sitosterol$) were in the range of $1,274\~4,768{\mu}g/g$ dry weight in suspended particulate from the stream-water, $292\~2,244{\mu}g/g$ dry weight in suspended particulate from the seawater and $4.5\~27.2{\mu}g/g$ dry weight in the sediments. Although sterol compositions in sediments, seawater and stream-water were different, cholesterol was the predominant sterol in all samples. The proportion and concentration of coprostanol, a sewage tracer, in stream-water was much higher than those in sediment and seawater. The sterol levels including coprostanol in the sediments and seawater were higher at inner basin than at the outer bay. Some molecular indices and multivariate statistical analysis were used to assess the origin of these sterols and sewage contamination in the study area. The sterol composition patterns in stream-water were mainly associated with contamination by sewage-derived organic matters and those of seawater were associated with the activities of marine-originated organisms. Sterol levels in the sediments were both from the sewage input through stream-water and the marine- originated organisms. This survey suggests that the main source/route of sewage-derived organic matters in Masan Bay is the input of stream-water into the bay.

직접 접촉식 막 증발공정에서 무기 막오염 특성 분석 및 저감방법 (Inorgainc fouling and it fouling reduction in direct contact membrane distillation process)

  • 이태민;김승현
    • 상하수도학회지
    • /
    • 제34권2호
    • /
    • pp.115-125
    • /
    • 2020
  • This study was aimed to examine inorganic fouling and fouling reduction method in direct contact membrane distillation(DCMD) process. Synthetic seawater of NaCl solution with CaCO3 and CaSO4 was used for this purpose. It was found in this study that both CaCO3 and CaSO4 precipitates formed at the membrane surface. More fouling was observed with CaSO4(anhydrite) and CaSO4·0.5H2O(bassanite) than CaSO4·2H2O(gypsum). CaCO3 and gypsum were detected at the membrane surface when concentrates of SWRO(seawater reverse osmosis) were treated by the DCMD process, while gypsum was found with MED(multi effect distillation) concentrates. Air backwash(inside to out) was found more effective in fouling reduction than air scouring.

해수 중 용존 아연의 화학적 존재 형태 연구 동향 (Review of Chemical Speciation of Dissolved Zinc in Seawater)

  • 김태진
    • 한국해양학회지:바다
    • /
    • 제25권3호
    • /
    • pp.67-80
    • /
    • 2020
  • 해양 환경에서 용존 미량금속 원소 중 하나인 아연(Zn)은 식물플랑크톤의 성장에 필수적인 미량영양염으로 알려져 있다. 외양 표층에서 대부분의 용존 아연은 용존 유기배위자와 강하게 결합하여 아연-유기착화합물을 형성하게 되고 이로 인해 생물 가용한 자유이온 형태의 아연(Zn2+)의 농도는 총 아연 농도의 5% 이내로 존재하게 된다. 이 논문에서는 아연의 화학적 존재 형태에 대한 개념과 측정 방법에 대해 간단히 소개하고, 주요 연구 사례를 통하여 미량금속의 화학 종조성이 해양 생지화학에 미치는 영향 및 의미, 아연-유기착화합물이 아연의 생물가용성에 미치는 영향, 아연과 결합하여 유기착화합물을 형성하는 용존 유기배위자의 기원에 대해 기술하였다.

역삼투막 공정에서 Direct Osmosis의 역방향 Flux 기초특성 (Characteristics of Reverse Flux by using Direct Omosis in RO Membrane Process)

  • 강일모;독고석
    • 상하수도학회지
    • /
    • 제25권3호
    • /
    • pp.399-405
    • /
    • 2011
  • In a desalination technology using RO membranes, chemical cleaning makes damage for membrane surface and membrane life be shortened. In this research cleaning technology using direct osmosis (DO) was introduced to apply it under the condition of high pH and high concentration of feed. When the high concentration of feed is injected to the concentrate side after release of operating pressure, then backward flow occurred from treated water toward concentrated for osmotic pressure. This flow reduces fouling on the membrane surface. Namely, flux of DO was monitored under pH 3, 5, 10 and 12 conditions at feed concentrations of NaCl 40,000 mg/L, 120,000 mg/L and 160,000 mg/L. As a result, DO flux in pH 12 increased about 21% than pH 3. DO cleaning was performed under the concentrate NaCl 160,000 mg/L of pH 12 during 20 minutes. Three kinds of synthetic feed water were used as concentrates. They consisted of organic, inorganic and seawater; chemicals of SiO2 (200 mg/L), humic acid (50 mg/L) sodium alginate (50 mg/L) and seawater. As a result, fluxes were recovered to 17% in organic fouling, 15% in inorganic fouling and 14% of seawater fouling after cleaning using DO under the condition of concentrate NaCl 160,000 mg/L of pH 12.

Al-4.06Mg-0.74Mn 합금의 해수 내 캐비테이션 환경에 따른 정전위 특성 평가 (Evaluation on Potentiostatic Characteristics of Al-4.06Mg-0.74Mn Alloy with Cavitation Environment in Seawater)

  • 이승준;한민수;장석기;김성종
    • 한국표면공학회지
    • /
    • 제45권6호
    • /
    • pp.272-277
    • /
    • 2012
  • The hull of a fast sailing aluminium ship are generally prone to erosion owing to the impact of seawater. At this time, synergistic effects of the erosion and the corrosion by aggressive ions such as chlorides tend to aggravate the damage. There have been various attempts, including selection of erosion-resistant materials, cathodic protection and addition of corrosion inhibitors, to overcome damage by erosion or corrosion under marine environments. These approaches, however, have limits on identifying the damage mechanism clearly, because they depend on analogical interpretation by correlating two damage behaviors after the individual studies are assessed. In this research, it was devised a hybrid testing apparatus that integrates electrochemical corrosion test and cavitation test, and thus the erosion-corrosion behavior by cavitation was investigated more reliably. As a result, the slightest damage was observed at the potentials between -1.6 V and -1.5 V. This is considered to be due to a reflection or counterbalancing effect caused by collision of the cavitation cavities and the hydrogen gas formed by activation polarization.

알루미늄 용융 도금된 304 스테인리스강의 해수 내 전기화학적 부식 특성 평가 (Evaluation of Electrochemical Corrosion Characteristics for Hot-Dip Aluminized 304 Stainless Steel in Seawater)

  • 정상옥;박일초;한민수;김성종
    • 한국표면공학회지
    • /
    • 제48권6호
    • /
    • pp.354-359
    • /
    • 2015
  • Stainless steel has poor corrosion resistance in marine environment due to the breakdown of a passive film caused by chloride. It suffers electrochemical corrosion like pitting corrosion, crevice corrosion, and stress corrosion crack (SCC) in marine environment. In general, it indicates that the passive film of $Al_2O_3$ has better corrosion resistance than that of $Cr_2O_3$ in seawater. This paper investigated the damage behavior 304 stainless steel and hot-dip aluminized 304 stainless steel in seawater solution. Various electrochemical experiments were carried out including potential measurement, potentiodynaimic experiment, Tafel analysis and galvanostatic experiment. As a result of anodic polarization experiment, higher pitting damage depth was indicated at 304 stainless steel than hot-dip aluminized 304 stainless steel. In addition, relatively higher corrosion current density was shown at hot-dip aluminized stainless steel as a result of Tafel analysis.

Distribution of Certain Chlorobenzenes in Seawater from Youngil Bay, Korea

  • Moon, Hyo-Bang;Park, Hee-Gu;Kim, Sang-Soo;Jeong, Seung-Ryul;Lee, Pil-Yong
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제10권S_3호
    • /
    • pp.107-111
    • /
    • 2001
  • Surface seawater was sampled from 20 stations in Youngil Bay, Korea in November 2000. The samples were analyzed for eight chlorobenzenes(CBs) out of a total of 12 in the congener series using a gas chromatography coupled to a mass spectrometer detector(GC/MSD). The total CB levels varied from 1.3 to 6.1 ng/L with a mean of 4.0 ng/L. Trichlorobenzene groups (sum of 1,3,5-, 1,2,4-, and 1,2,3-trichlorobenzene) were the predominant class among the four congener groups, while tetrachlorobenzenes(sum of 1,2,3,5-, 1,2,4,5-, and 1,2,3,4- tetrachlorobenzene) and pentachlorobenzene showed a low presence. The total CB levels exhibited similar patterns for all the stations. A significant positive correlation was observed between the individual CB compounds in the particulate samples, while the dissolved samples revealed a strong correlation between the heavier molecular weight CBs.

  • PDF

HIGH COOLING WATER TEMPERATURE EFFECTS ON DESIGN AND OPERATIONAL SAFETY OF NPPS IN THE GULF REGION

  • Kim, Byung Koo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • 제45권7호
    • /
    • pp.961-968
    • /
    • 2013
  • The Arabian Gulf region has one of the highest ocean temperatures, reaching above 35 degrees and ambient temperatures over 50 degrees in the summer. Two nuclear power plants (NPP) are being introduced in the region for the first time, one at Bushehr (1,000 MWe PWR plant from Russia), and a much larger one at Barakah (4X1,400 MWe PWR from Korea). Both plants take seawater from the Gulf for condenser cooling, having to modify the secondary/tertiary side cooling systems design by increasing the heat transfer surface area from the country of origin. This paper analyses the secondary side of a typical PWR plant operating under the Rankine cycle with a simplified thermal-hydraulic model. Parametric study of ocean cooling temperatures is conducted to estimate thermal efficiency variations and its associated design changes for the secondary side. Operational safety is reviewed to deliver rated power output with acceptable safety margins in line with technical specifications, mainly in the auxiliary systems together with the cooling water temperature. Impact on the Gulf seawater as the ultimate heat sink is considered negligible, affecting only the adjacent water near the NPP site, when compared to the solar radiation on the sea surface.