DOI QR코드

DOI QR Code

Review of Chemical Speciation of Dissolved Zinc in Seawater

해수 중 용존 아연의 화학적 존재 형태 연구 동향

  • KIM, TAEJIN (Department of Oceanography, Pukyong National University)
  • Received : 2020.07.03
  • Accepted : 2020.08.11
  • Published : 2020.08.31

Abstract

Zinc (Zn) is known as an essential micronutrient for phytoplankton in the ocean. In surface waters, most of total dissolved Zn presents as organic complexes, and organic complexation dominates the speciation of Zn in seawater. Organic complexation reduces the bioavailable fraction of Zn, the free metal ion (Zn2+), which present less than 5% in surface waters. In this paper, a brief introduction on chemical speciation of dissolved Zn in seawater and analytical method for chemical speciation measurement is provided. Some representative studies were also introduced to describe the importance of chemical speciation of Zn (or other trace metals) on bioavailability and biogeochemistry in the ocean.

해양 환경에서 용존 미량금속 원소 중 하나인 아연(Zn)은 식물플랑크톤의 성장에 필수적인 미량영양염으로 알려져 있다. 외양 표층에서 대부분의 용존 아연은 용존 유기배위자와 강하게 결합하여 아연-유기착화합물을 형성하게 되고 이로 인해 생물 가용한 자유이온 형태의 아연(Zn2+)의 농도는 총 아연 농도의 5% 이내로 존재하게 된다. 이 논문에서는 아연의 화학적 존재 형태에 대한 개념과 측정 방법에 대해 간단히 소개하고, 주요 연구 사례를 통하여 미량금속의 화학 종조성이 해양 생지화학에 미치는 영향 및 의미, 아연-유기착화합물이 아연의 생물가용성에 미치는 영향, 아연과 결합하여 유기착화합물을 형성하는 용존 유기배위자의 기원에 대해 기술하였다.

Keywords

References

  1. Anderson, R.F., 2020. GEOTRACES: Accelerating Research on the Marine Biogeochemical Cycles of Trace Elements and Their Isotopes. Annual Review of Marine Science, 12(1): 49-85. https://doi.org/10.1146/annurev-marine-010318-095123
  2. Baars, O. and P.L. Croot, 2011. The speciation of dissolved zinc in the Atlantic sector of the Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 58(25-26): 2720-2732. https://doi.org/10.1016/j.dsr2.2011.02.003
  3. Brand, L.E., W.G. Sunda and R.R.L. Guillard, 1986. Reduction of marine phytoplankton reproduction rates by copper and cadmium. Journal of Experimental Marine Biology and Ecology, 96(3): 225-250. https://doi.org/10.1016/0022-0981(86)90205-4
  4. Bruland, K.W., 1989. Complexation of zinc by natural organic ligands in the central North Pacific. Limnology and oceanography, 34(2): 269-285. https://doi.org/10.4319/lo.1989.34.2.0269
  5. Bruland, K.W. and M.C. Lohan, 2006. Controls of trace metals in seawater. In: The oceans and marine geochemistry, edited by Elderfield H., H.D. Holland, H. Elderfield, and K.K. Turekian, Elsevier, Amsterdam, 23-47 pp.
  6. Bruland, K.W., R.P. Franks, G.A. Knauer and J.H. Martin, 1979. Sampling and analytical methods for the determination of copper, cadmium, zinc and nickel at the nanogram per liter level in sea water. Analytica Chimica Acta, 105: 233-245. https://doi.org/10.1016/S0003-2670(01)83754-5
  7. Campbell, P.G.C., O. Errecalde, C. Fortin, V.P. Hiriart-Baer and B. Vigneault, 2002. Metal bioavailability to phytoplankton-applicability of the biotic ligand model. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 133(1-2): 189-206. https://doi.org/10.1016/S1532-0456(02)00104-7
  8. Cutter, G.A. and K.W. Bruland, 2012. Rapid and noncontaminating sampling system for trace elements in global ocean surveys. Limnology and Oceanography: Methods, 10: 425-436. https://doi.org/10.4319/lom.2012.10.425
  9. Cutter, G.A., P. Andersson, L. Codispoti, P.L. Croot, R. Francois, M.C. Lohan and H. Obata, 2013. Sampling and Sample-handling Protocols for GEOTRACES Cruises, geotraces.org.
  10. de Baar, H.J.W., K.R. Timmermans, P. Laan, H.H. De Porto, S. Ober, J.J. Blom, M.C. Bakker, J. Schilling, G. Sarthou, M.G. Smit and M. Klunder, 2008. Titan: A new facility for ultraclean sampling of trace elements and isotopes in the deep oceans in the international Geotraces program. Marine Chemistry, 111(1-2): 4-21. https://doi.org/10.1016/j.marchem.2007.07.009
  11. Donat, J.R. and K.W. Bruland, 1990. A comparison of two voltammetric techniques for determining zinc speciation in Northeast Pacific Ocean waters. Marine Chemistry, 28(4): 301-323. https://doi.org/10.1016/0304-4203(90)90050-M
  12. Ellwood, M.J., 2004. Zinc and cadmium speciation in subantarctic waters east of New Zealand. Marine Chemistry, 87(1-2): 37-58. https://doi.org/10.1016/j.marchem.2004.01.005
  13. Ellwood, M.J. and C.M.G. van den Berg, 2000. Zinc speciation in the Northeastern Atlantic Ocean. Marine Chemistry, 68(4): 295-306. https://doi.org/10.1016/S0304-4203(99)00085-7
  14. Guo, X., Y. Miyazawa and T. Yamagata, 2006. The Kuroshio Onshore Intrusion along the Shelf Break of the East China Sea: The Origin of the Tsushima Warm Current. Journal of Physical Oceanography, 36(12): 2205-2231. https://doi.org/10.1175/JPO2976.1
  15. Jakuba, R.W., J.W. Moffett and S.T. Dyhrman, 2008. Evidence for the linked biogeochemical cycling of zinc, cobalt, and phosphorus in the western North Atlantic Ocean. Global Biogeochemical Cycles, 22(4): GB4012. https://doi.org/10.1029/2007GB003119
  16. Jakuba, R.W., M.A. Saito, J.W. Moffett and Y. Xu, 2012. Dissolved zinc in the subarctic North Pacific and Bering Sea: Its distribution, speciation, and importance to primary producers. Global Biogeochemical Cycles, 26(2): GB2015.
  17. Johnson, K.S., E. Boyle, K.W. Bruland, K.H. Coale, C. Measures, J.W. Moffett, A. Aguilar-Islas, K.A. Barbeau, B. Bergquist, A. Bowie, K.N. Buck, Y. Cai, Z. Chase, J. Cullen, T. Doi, V. Elrod, S. Fitzwater, M. Gordon, A. King, P. Laan, L. Laglera-Baquer, W. Landing, M. C. Lohan, J. Mendez, A. Milne, H. Obata, L. Ossiander, J. Plant, G. Sarthou, P. Sedwick, G.J. Smith, B. Sohst, S. Tanner, C.M.G. van den Berg and J. Wu, 2007. Developing standards for dissolved iron in seawater. Eos, Transactions American Geophysical Union, 88(11): 131-132. https://doi.org/10.1029/2007EO110003
  18. Kim, S.H., K. Ra, K.-T. Kim, H. Jeong, J. Lee, D.-J. Kang, T. Rho and I. Kim, 2019. R/V Isabu-Based First Ultraclean Seawater Sampling for Ocean Trace Elements in Korea. Ocean Science Journal, 54(4): 673-684. https://doi.org/10.1007/s12601-019-0030-x
  19. Kim, T., H. Obata, T. Gamo and J. Nishioka, 2015a. Sampling and onboard analytical methods for determining subnanomolar concentrations of zinc in seawater. Limnology and Oceanography: Methods, 13(1): 30-39. https://doi.org/10.1002/lom3.10004
  20. Kim, T., H. Obata, Y. Kondo, H. Ogawa and T. Gamo, 2015b. Distribution and speciation of dissolved zinc in the western North Pacific and its adjacent seas. Marine Chemistry, 173: 330-341. https://doi.org/10.1016/j.marchem.2014.10.016
  21. Kim, T., H. Obata and T. Gamo, 2015c. Dissolved Zn and its speciation in the northeastern Indian Ocean and the Andaman Sea. Frontiers in Marine Science, 2: 60.
  22. Lane, T.W. and F.M. Morel, 2000. Regulation of carbonic anhydrase expression by zinc, cobalt, and carbon dioxide in the marine diatom Thalassiosira weissflogii. Plant physiology, 123(1): 345-352. https://doi.org/10.1104/pp.123.1.345
  23. Lohan, M.C., D.W. Crawford, D.A. Purdie and P.J. Statham, 2005. Iron and zinc enrichments in the northeastern subarctic Pacific: Ligand production and zinc availability in response to phytoplankton growth. Limnology and oceanography, 50(5): 1427-1437. https://doi.org/10.4319/lo.2005.50.5.1427
  24. Measures, C.I., W.M. Landing, M.T. Brown and C.S. Buck, 2008. A commercially available rosette system for trace metal clean sampling. Limnology and Oceanography: Methods, 6: 384-394. https://doi.org/10.4319/lom.2008.6.384
  25. Moffett, J.W. and L.E. Brand, 1996. Production of strong, extracellular Cu chelators by marine cyanobacteria in response to Cu stress. Limnology and oceanography, 41(3): 388-395. https://doi.org/10.4319/lo.1996.41.3.0388
  26. Morel, F.M.M., J.R. Reinfelder, S.B. Roberts, C.P. Chamberlain, J.G. Lee and D. Yee, 1994. Zinc and carbon co-limitation of marine phytoplankton. Nature, 369(6483): 740-742. https://doi.org/10.1038/369740a0
  27. Muller, F.L.L., S.B. Gulin and A. Kalvoy, 2001. Chemical speciation of copper and zinc in surface waters of the western Black Sea. Marine Chemistry, 76(4): 233-251. https://doi.org/10.1016/S0304-4203(01)00060-3
  28. Nakatsuka, T., M. Toda, K. Kawamura and M. Wakatsuchi, 2004. Dissolved and particulate organic carbon in the Sea of Okhotsk: Transport from continental shelf to ocean interior. Journal of Geophysical Research: Oceans, 109(C9): C09S14.
  29. Obata, H., J. Nishioka, T. Kim, K. Norisuye, S. Takeda, Y. Wakuta and T. Gamo, 2017. Dissolved iron and zinc in Sagami Bay and the Izu-Ogasawara Trench. Journal of Oceanography, 73(3): 333-344. https://doi.org/10.1007/s10872-016-0407-8
  30. Rijkenberg, M.J A., H.J.W. de Baar, K. Bakker, L.J.A. Gerringa, E. Keijzer, M. Laan, P. Laan, R. Middag, S. Ober, J. van Ooijen, S. Ossebaar, E.M. van Weerlee and M.G. Smit, 2015. "PRISTINE," a new high volume sampler for ultraclean sampling of trace metals and isotopes. Marine Chemistry, 177: 501-509. https://doi.org/10.1016/j.marchem.2015.07.001
  31. Rue, E.L. and K.W. Bruland, 1995. Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Marine Chemistry, 50(1-4): 117-138. https://doi.org/10.1016/0304-4203(95)00031-L
  32. Ruzic, I., 1982. Theoretical aspects of the direct titration of natural waters and its information yield for trace metal speciation. Analytica Chimica Acta, 140(1): 99-113. https://doi.org/10.1016/S0003-2670(01)95456-X
  33. Shaked, Y., Y. Xu, K. Leblanc and F.M.M. Morel, 2006. Zinc availability and alkaline phosphatase activity in Emiliania huxleyi: Implications for Zn-P co-limitation in the ocean. Limnology and oceanography, 51(1): 299-309. https://doi.org/10.4319/lo.2006.51.1.0299
  34. Skrabal, S.A., K.L. Lieseke and R.J. Kieber, 2006. Dissolved zinc and zinc-complexing ligands in an organic-rich estuary: Benthic fluxes and comparison with copper speciation. Marine Chemistry, 100(1-2): 108-123. https://doi.org/10.1016/j.marchem.2005.12.004
  35. Sunda, W.G. and S.A. Huntsman, 1992. Feedback interactions between zinc and phytoplankton in seawater. Limnology and oceanography, 37(1): 25-40. https://doi.org/10.4319/lo.1992.37.1.0025
  36. Turner, D.R., M. Whitfield and A.G. Dickson, 1981. The equilibrium speciation of dissolved components in freshwater and sea water at $25^{\circ}C$ and 1 atm pressure. Geochimica et Cosmochimica Acta, 45(6): 855-881. https://doi.org/10.1016/0016-7037(81)90115-0
  37. van den Berg, C.M.G., 1982. Determination of copper complexation with natural organic ligands in seawater by equilibration with MnO2 I. Theory. Marine Chemistry, 11(4): 307-322. https://doi.org/10.1016/0304-4203(82)90028-7
  38. van den Berg, C.M.G., 1985. Determination of the zinc complexing capacity in seawater by cathodic stripping voltammetry of zinc-APDC complex ions. Marine Chemistry, 16(2): 121-130. https://doi.org/10.1016/0304-4203(85)90017-9
  39. Wong, K.H., H. Obata, T. Kim, A.S. Mashio, H. Fukuda and H. Ogawa, 2018. Organic complexation of copper in estuarine waters: An assessment of the multi-detection window approach. Marine Chemistry, 204: 144-151. https://doi.org/10.1016/j.marchem.2018.07.001
  40. Wyatt, N.J., A. Milne, E.M.S. Woodward, A.P. Rees, T.J. Browning, H.A. Bouman, P.J. Worsfold and M.C. Lohan, 2014. Biogeochemical cycling of dissolved zinc along the GEOTRACES South Atlantic transect GA10 at $40^{\circ}S$. Global Biogeochemical Cycles, 28(1): 44-56. https://doi.org/10.1002/2013GB004637