Browse > Article
http://dx.doi.org/10.7850/jkso.2020.25.3.067

Review of Chemical Speciation of Dissolved Zinc in Seawater  

KIM, TAEJIN (Department of Oceanography, Pukyong National University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.25, no.3, 2020 , pp. 67-80 More about this Journal
Abstract
Zinc (Zn) is known as an essential micronutrient for phytoplankton in the ocean. In surface waters, most of total dissolved Zn presents as organic complexes, and organic complexation dominates the speciation of Zn in seawater. Organic complexation reduces the bioavailable fraction of Zn, the free metal ion (Zn2+), which present less than 5% in surface waters. In this paper, a brief introduction on chemical speciation of dissolved Zn in seawater and analytical method for chemical speciation measurement is provided. Some representative studies were also introduced to describe the importance of chemical speciation of Zn (or other trace metals) on bioavailability and biogeochemistry in the ocean.
Keywords
Trace metal; Zinc; Clean sampling; Chemical speciation; Organic ligands;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Guo, X., Y. Miyazawa and T. Yamagata, 2006. The Kuroshio Onshore Intrusion along the Shelf Break of the East China Sea: The Origin of the Tsushima Warm Current. Journal of Physical Oceanography, 36(12): 2205-2231.   DOI
2 Jakuba, R.W., J.W. Moffett and S.T. Dyhrman, 2008. Evidence for the linked biogeochemical cycling of zinc, cobalt, and phosphorus in the western North Atlantic Ocean. Global Biogeochemical Cycles, 22(4): GB4012.   DOI
3 Jakuba, R.W., M.A. Saito, J.W. Moffett and Y. Xu, 2012. Dissolved zinc in the subarctic North Pacific and Bering Sea: Its distribution, speciation, and importance to primary producers. Global Biogeochemical Cycles, 26(2): GB2015.
4 Johnson, K.S., E. Boyle, K.W. Bruland, K.H. Coale, C. Measures, J.W. Moffett, A. Aguilar-Islas, K.A. Barbeau, B. Bergquist, A. Bowie, K.N. Buck, Y. Cai, Z. Chase, J. Cullen, T. Doi, V. Elrod, S. Fitzwater, M. Gordon, A. King, P. Laan, L. Laglera-Baquer, W. Landing, M. C. Lohan, J. Mendez, A. Milne, H. Obata, L. Ossiander, J. Plant, G. Sarthou, P. Sedwick, G.J. Smith, B. Sohst, S. Tanner, C.M.G. van den Berg and J. Wu, 2007. Developing standards for dissolved iron in seawater. Eos, Transactions American Geophysical Union, 88(11): 131-132.   DOI
5 Kim, S.H., K. Ra, K.-T. Kim, H. Jeong, J. Lee, D.-J. Kang, T. Rho and I. Kim, 2019. R/V Isabu-Based First Ultraclean Seawater Sampling for Ocean Trace Elements in Korea. Ocean Science Journal, 54(4): 673-684.   DOI
6 Kim, T., H. Obata, T. Gamo and J. Nishioka, 2015a. Sampling and onboard analytical methods for determining subnanomolar concentrations of zinc in seawater. Limnology and Oceanography: Methods, 13(1): 30-39.   DOI
7 Kim, T., H. Obata, Y. Kondo, H. Ogawa and T. Gamo, 2015b. Distribution and speciation of dissolved zinc in the western North Pacific and its adjacent seas. Marine Chemistry, 173: 330-341.   DOI
8 Kim, T., H. Obata and T. Gamo, 2015c. Dissolved Zn and its speciation in the northeastern Indian Ocean and the Andaman Sea. Frontiers in Marine Science, 2: 60.
9 Lane, T.W. and F.M. Morel, 2000. Regulation of carbonic anhydrase expression by zinc, cobalt, and carbon dioxide in the marine diatom Thalassiosira weissflogii. Plant physiology, 123(1): 345-352.   DOI
10 Lohan, M.C., D.W. Crawford, D.A. Purdie and P.J. Statham, 2005. Iron and zinc enrichments in the northeastern subarctic Pacific: Ligand production and zinc availability in response to phytoplankton growth. Limnology and oceanography, 50(5): 1427-1437.   DOI
11 Measures, C.I., W.M. Landing, M.T. Brown and C.S. Buck, 2008. A commercially available rosette system for trace metal clean sampling. Limnology and Oceanography: Methods, 6: 384-394.   DOI
12 Moffett, J.W. and L.E. Brand, 1996. Production of strong, extracellular Cu chelators by marine cyanobacteria in response to Cu stress. Limnology and oceanography, 41(3): 388-395.   DOI
13 Morel, F.M.M., J.R. Reinfelder, S.B. Roberts, C.P. Chamberlain, J.G. Lee and D. Yee, 1994. Zinc and carbon co-limitation of marine phytoplankton. Nature, 369(6483): 740-742.   DOI
14 Muller, F.L.L., S.B. Gulin and A. Kalvoy, 2001. Chemical speciation of copper and zinc in surface waters of the western Black Sea. Marine Chemistry, 76(4): 233-251.   DOI
15 Nakatsuka, T., M. Toda, K. Kawamura and M. Wakatsuchi, 2004. Dissolved and particulate organic carbon in the Sea of Okhotsk: Transport from continental shelf to ocean interior. Journal of Geophysical Research: Oceans, 109(C9): C09S14.
16 Ruzic, I., 1982. Theoretical aspects of the direct titration of natural waters and its information yield for trace metal speciation. Analytica Chimica Acta, 140(1): 99-113.   DOI
17 Obata, H., J. Nishioka, T. Kim, K. Norisuye, S. Takeda, Y. Wakuta and T. Gamo, 2017. Dissolved iron and zinc in Sagami Bay and the Izu-Ogasawara Trench. Journal of Oceanography, 73(3): 333-344.   DOI
18 Rijkenberg, M.J A., H.J.W. de Baar, K. Bakker, L.J.A. Gerringa, E. Keijzer, M. Laan, P. Laan, R. Middag, S. Ober, J. van Ooijen, S. Ossebaar, E.M. van Weerlee and M.G. Smit, 2015. "PRISTINE," a new high volume sampler for ultraclean sampling of trace metals and isotopes. Marine Chemistry, 177: 501-509.   DOI
19 Rue, E.L. and K.W. Bruland, 1995. Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Marine Chemistry, 50(1-4): 117-138.   DOI
20 Shaked, Y., Y. Xu, K. Leblanc and F.M.M. Morel, 2006. Zinc availability and alkaline phosphatase activity in Emiliania huxleyi: Implications for Zn-P co-limitation in the ocean. Limnology and oceanography, 51(1): 299-309.   DOI
21 Skrabal, S.A., K.L. Lieseke and R.J. Kieber, 2006. Dissolved zinc and zinc-complexing ligands in an organic-rich estuary: Benthic fluxes and comparison with copper speciation. Marine Chemistry, 100(1-2): 108-123.   DOI
22 Sunda, W.G. and S.A. Huntsman, 1992. Feedback interactions between zinc and phytoplankton in seawater. Limnology and oceanography, 37(1): 25-40.   DOI
23 Turner, D.R., M. Whitfield and A.G. Dickson, 1981. The equilibrium speciation of dissolved components in freshwater and sea water at $25^{\circ}C$ and 1 atm pressure. Geochimica et Cosmochimica Acta, 45(6): 855-881.   DOI
24 Wyatt, N.J., A. Milne, E.M.S. Woodward, A.P. Rees, T.J. Browning, H.A. Bouman, P.J. Worsfold and M.C. Lohan, 2014. Biogeochemical cycling of dissolved zinc along the GEOTRACES South Atlantic transect GA10 at $40^{\circ}S$. Global Biogeochemical Cycles, 28(1): 44-56.   DOI
25 van den Berg, C.M.G., 1982. Determination of copper complexation with natural organic ligands in seawater by equilibration with MnO2 I. Theory. Marine Chemistry, 11(4): 307-322.   DOI
26 van den Berg, C.M.G., 1985. Determination of the zinc complexing capacity in seawater by cathodic stripping voltammetry of zinc-APDC complex ions. Marine Chemistry, 16(2): 121-130.   DOI
27 Wong, K.H., H. Obata, T. Kim, A.S. Mashio, H. Fukuda and H. Ogawa, 2018. Organic complexation of copper in estuarine waters: An assessment of the multi-detection window approach. Marine Chemistry, 204: 144-151.   DOI
28 Brand, L.E., W.G. Sunda and R.R.L. Guillard, 1986. Reduction of marine phytoplankton reproduction rates by copper and cadmium. Journal of Experimental Marine Biology and Ecology, 96(3): 225-250.   DOI
29 Anderson, R.F., 2020. GEOTRACES: Accelerating Research on the Marine Biogeochemical Cycles of Trace Elements and Their Isotopes. Annual Review of Marine Science, 12(1): 49-85.   DOI
30 Baars, O. and P.L. Croot, 2011. The speciation of dissolved zinc in the Atlantic sector of the Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 58(25-26): 2720-2732.   DOI
31 Bruland, K.W., 1989. Complexation of zinc by natural organic ligands in the central North Pacific. Limnology and oceanography, 34(2): 269-285.   DOI
32 Bruland, K.W. and M.C. Lohan, 2006. Controls of trace metals in seawater. In: The oceans and marine geochemistry, edited by Elderfield H., H.D. Holland, H. Elderfield, and K.K. Turekian, Elsevier, Amsterdam, 23-47 pp.
33 Cutter, G.A., P. Andersson, L. Codispoti, P.L. Croot, R. Francois, M.C. Lohan and H. Obata, 2013. Sampling and Sample-handling Protocols for GEOTRACES Cruises, geotraces.org.
34 Bruland, K.W., R.P. Franks, G.A. Knauer and J.H. Martin, 1979. Sampling and analytical methods for the determination of copper, cadmium, zinc and nickel at the nanogram per liter level in sea water. Analytica Chimica Acta, 105: 233-245.   DOI
35 Campbell, P.G.C., O. Errecalde, C. Fortin, V.P. Hiriart-Baer and B. Vigneault, 2002. Metal bioavailability to phytoplankton-applicability of the biotic ligand model. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 133(1-2): 189-206.   DOI
36 Cutter, G.A. and K.W. Bruland, 2012. Rapid and noncontaminating sampling system for trace elements in global ocean surveys. Limnology and Oceanography: Methods, 10: 425-436.   DOI
37 de Baar, H.J.W., K.R. Timmermans, P. Laan, H.H. De Porto, S. Ober, J.J. Blom, M.C. Bakker, J. Schilling, G. Sarthou, M.G. Smit and M. Klunder, 2008. Titan: A new facility for ultraclean sampling of trace elements and isotopes in the deep oceans in the international Geotraces program. Marine Chemistry, 111(1-2): 4-21.   DOI
38 Donat, J.R. and K.W. Bruland, 1990. A comparison of two voltammetric techniques for determining zinc speciation in Northeast Pacific Ocean waters. Marine Chemistry, 28(4): 301-323.   DOI
39 Ellwood, M.J., 2004. Zinc and cadmium speciation in subantarctic waters east of New Zealand. Marine Chemistry, 87(1-2): 37-58.   DOI
40 Ellwood, M.J. and C.M.G. van den Berg, 2000. Zinc speciation in the Northeastern Atlantic Ocean. Marine Chemistry, 68(4): 295-306.   DOI