• 제목/요약/키워드: surface runoff

검색결과 656건 처리시간 0.037초

농약의 토양 표면유출에 관한 연구-III - 실내에서 인공강우에 의한 농약의 유출특성 - (Study on Pesticide Runoff from Soil Surface-III - Runoff of Pesticides by Simulated Rainfall in the Laboratory -)

  • 염동혁;김정한;이성규;김용화;박창규;김균
    • Applied Biological Chemistry
    • /
    • 제40권4호
    • /
    • pp.334-341
    • /
    • 1997
  • 강우에 의한 농약의 토양표면 유출특성을 알아보고자 인공강우(20 mm/hr)에 의한 실내 유출실험을 7개 농약을 대상으로 수행한 결과, 유출율은 metolachor 57.0%, alachlor 14.2%, chlorothalonil 13.2%, chlorpyrifos 7.9%, EPN 7.2%, phorate 7.1%, captafol 2.8%였고, 평균 유출농도는 각각 940, 399, 55, 7.0, 9.3, 151, 7.0 ppb였다. 유출율과 농약의 물리화학적 특성(수용성, 분배계수, 토양흡착계수)과의 상관관계를 보면 실내유출실험에서 수용성과의 상관성이 높았으며(r=0.923), 그 이외의 실험조건에서도 수용성 보다 높지는 않았지만 상관성이 유사하였다. 이 결과를 바탕으로 실내 실험결과를 이용한 포장에서의 유출을 예측가능성을 확인하고자 유출을 예측식 $[Y=0.2812{\times}10{\exp}(0.261logWS-0.366)+0.3594{\times}10{\exp}(-0.545logKoc+1.747)+0.3594{\times}10{\exp}(-0.362log\;Kow+1.105]$과 전환식을 도출하였다. 자연포장에서 수행한 captafol의 유출율과 유출율 예측식을 이용하여 계산한 결과를 비교해 보면 예측식에 의한 유출율은 실험치보다 약 6배 이상 높았으나 전환식을 사용시 유출율은 실험치와 유사하였다. 따라서 실내유출 실험을 통한 유출율과 대상농약의 수용성, 분배계수, 토양흡착계수를 사용하여 유도한 유출예측식과 전환식을 이용하여 포장에서 강우에 의한 이들 농약의 유출율 예측이 가능하였다.

  • PDF

농약의 토양 표면 유출에 관한 연구-II - 포장에서 인공강우에 의한 phorate의 유출특성 - (Study on Pesticide Runoff from Soil Surface-II - Runoff of Phorate by Simulated Rainfall in Field -)

  • 염동혁;김정한;이성규;김용화;박창규;김균
    • Applied Biological Chemistry
    • /
    • 제40권4호
    • /
    • pp.323-328
    • /
    • 1997
  • 토양살충제인 phorate를 포장에 살포한 후, 토성이 다른 두 지역의 소형시험구$(120\;cm{\times}120\;cm)$에서 호우(20 mm/hour) 및 세우(5 mm/hour) 조건의 인공강우에 의한 유출농도와 유출율을 측정하였으며, phorate의 유출 농도가 수서생물에 미치는 영향을 파악하기 위하여 유출수를 이용한 송사리에 대한 급성독성실험을 수행하였다. Phorate의 유출정도는 호우 및 세우조건에 따른 차이가 크지 않았고, 양토 및 사양토에서의 평균 유출농도는 각각 11.3 ppb 및 4.8 ppb였으며, 평균유출율은 0.50%이었는데, 양토지역에서 호우시 1.31%, 세우시 0.18%, 사양토지역에서 호우시 0.48%, 세우시 0.012%였으며, 양토지역에서 phorate 유출수를 54.4%로 희석하였을 때 송사리에 대한 급성독성치(96시간 $LC_{50}$)가 관찰되었고, 사양토지역의 유출수는 그 자체로도 50% 이상의 치사가 나타나지 않을 정도로 양토지역보다 독성이 낮았다.

  • PDF

분포형 강우-유출 모형에서 토양도 격자크기 효과가 Green-Ampt 모형의 매개변수와 모의된 강우손실에 미치는 영향 (Impact of Different Green-Ampt Model Parameters on the Distributed Rainfall-Runoff Model FLO-2D owing to Scale Heterogeneity)

  • 황지형;이길하
    • 한국환경과학회지
    • /
    • 제29권1호
    • /
    • pp.15-23
    • /
    • 2020
  • The determination of soil characteristics is important in the simulation of rainfall runoff using a distributed FLO-2D model in catchment analysis. Digital maps acquired using remote sensing techniques have been widely used in modern hydrology. However, the determination of a representative parameter with spatial scaling mismatch is difficult. In this investigation, the FLO-2D rainfall-runoff model is utilized in the Yongdam catchment to test sensitivity based on three different methods (mosaic, arithmetic, and predominant) that describe soil surface characteristics in real systems. The results show that the mosaic method is costly, but provides a reasonably realistic description and exhibits superior performance compared to other methods in terms of both the amount and time to peak flow.

저지대 농경지의 홍수범람 분석 (Analyzing the Flood Inundation in Low Agricultural Area)

  • 전계원;이호진
    • 한국농공학회논문집
    • /
    • 제49권2호
    • /
    • pp.17-24
    • /
    • 2007
  • This study analyzes the flood inundation in low agricultural area caused by rainfall during typhoon periods and how flood inundation areas should be affected. GIS techniques, HEC-HMS and HEC-GeoHMS were used for flood runoff, HEC-RAS was applied in water surface elevation analysis at each cross-section. RMA2, SED2D were applied for runoff characteristics of inundation areas and river bed change and distribution of sediment. As a result, velocity distribution was analyzed 2.6 m/s-3.4 m/s in flood inundation by water level increase. In the case of bed elevation change, most sediments were deposited to the parts that adjoin bank.

도시유역의 내수배제시스템 설계를 위한 유출특성분석 -SWMM의 적용- (Runoff Characteristics Analysis for Interior Drainage Systems in Urban Basin -Application of SWMM-)

  • 최윤영;이영화
    • 한국환경과학회지
    • /
    • 제9권3호
    • /
    • pp.193-199
    • /
    • 2000
  • This study is carried out the analysis of the runoff characteristics for the design of the interior drainage systems by SWMM in urbanization basin. The basin analyzed in this study is Bumuh-chun basin which is located in Susung-gu of Taegu city. Huff method is used for rainfall distribution analysis. The optimal rainfall duration in Bumuh-chun basin is analyzed as about 90 minutes decided from comparison of arrival time and critical duration. Flood flow variation pattern is proposed through the comparison of the results of peak flow and peak time analyzed by SWMM about pre-urbanization and post-urbanization of Bumuh-chun basin. It is known that the variation of arrival time caused by the rapid increase of pavement rate in the upper area shows about 20∼25 minutes faster than pre- urbanization. Therefore, the management of surface water for design of water supply and drainage, and channel alteration has to considered the variation of geological factors according to urbanization.

  • PDF

Properties of Hydrologic Cycle in Catchments in Different Land Use and Runoff Analysis by a Lumped Parametric Model

  • Takase, Keiji
    • 한국수자원학회논문집
    • /
    • 제33권S1호
    • /
    • pp.48-56
    • /
    • 2000
  • In this paper, properties of hydrologic cycle in three experimental catchments were compared and different types of a lumped parametric model were applied to understand the hydrologic cycle in the catchments. One of them is a forest catchment and another one includes the reclained upland fields and last one does terraces paddy fields. The comparison of hydrologic properties showed that the differences in land used have great influences on the soil properties of surface layer, which cause changes in hydrologic processes such as evapotranspiration and storm runoff et.al. By the runoff analysis models, good agreements between observed and calculated discharge from the catchments were obtained and it was found that the differences in values of optimized model parameters and water budget components reflect those in the hydrologic cycle among them.

  • PDF

무심천 유역에 대한 지하수 함양량의 시공간적 변동성 분석

  • 정일문;김남원;이정우;이병주
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2006년도 총회 및 춘계학술발표회
    • /
    • pp.282-285
    • /
    • 2006
  • This study is to present the method for estimating groundwater recharge with temporal-spatial variability using the SWAT model which can represent the heterogeneity of the watershed. The SWAT model can simulate daily surface runoff, evapotranspiration, soil storage, recharge, and groundwater flow within the watershed. The model was applied to Musimcheon watershed located in the upstream of Mihocheon watershed. Hydrological components were determined for the period 2001 - 2004, and the validity of the results was tested by comparing the estimated runoff with the observed runoff data at the outlet of the catchment. The results of temporal and spatial variations of recharge were presented, This study suggests that variations in recharge can be significantly affected by subbasin slope as well as land use changes.

  • PDF

APPLICATION OF GRID-BASED KINEMATIC WAVE STORM RUNOFF MODEL(KIMSTORM)

  • Kim, Seong-Joon;Kim, Sun-Joo;Chae, Hyo-Sok
    • Water Engineering Research
    • /
    • 제1권4호
    • /
    • pp.321-330
    • /
    • 2000
  • The grid-based KIneMatic wave STOrm Runoff Model(Kim, 1998; Kim, et al., 1998) which predicts temporal variation and spatial distribution of overland flow, subsurface flow and stream flow was evaluated at two watersheds. This model adopts the single overland flowpath algorithm and simulates surface and/or subsurface water depth at each cell by using water balance of hydrologic components. The model programmed by C-language uses ASCII-formatted map data supported by the irregular gridded map of the GRASS(Geographic Resources Analysis Support System) GIS and generates the spatial distribution maps of discharge, flow depth and soil moisture of the watershed.

  • PDF

유역내 네가지 강수손실 성분들의 합성 (Combining Four Elements of Precipitation Loss in a Watershed)

  • 유주환
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.200-204
    • /
    • 2012
  • In engineering hydrology, an estimation of precipitation loss is one of the most important issues for successful modeling to forecast flooding or evaluate water resources for both surface and subsurface flows in a watershed. An accurate estimation of precipitation loss is required for successful implementation of rainfall-runoff models. Precipitation loss or hydrological abstraction may be defined as the portion of the precipitation that does not contribute to the direct runoff. It may consist of several loss elements or abstractions of precipitation such as infiltration, depression storage, evaporation or evapotranspiration, and interception. A composite loss rate model that combines four loss rates over time is derived as a lumped form of a continuous time function for a storm event. The composite loss rate model developed is an exponential model similar to Horton's infiltration model, but its parameters have different meanings. In this model, the initial loss rate is related to antecedent precipitation amounts prior to a storm event, and the decay factor of the loss rate is a composite decay of four losses.

  • PDF

Properties of Hydrologic Cycle in Catchments in Different Land Use and Runoff Analysis by a Lumped Parametric Model

  • Keiji Takase
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2000년도 학술발표회 논문집
    • /
    • pp.48-56
    • /
    • 2000
  • In this paper, properties of hydrologic cycle in three experimental catchments were compared and different types of a lumped parametric model were applied to understand the hydrologic cycle in the catchments. One of them is a forest catchment and another one includes the reclaimed upland fields and last one does terraces paddy fields. The comparison of hydrologic properties showed that the differences in land use have great influences on the soil properties of surface layer, which changes in hydrologic processes such as evapotranspiration and storm runoff et. al. By the runoff analysis models, good agreements between observed and calculated discharge from the catchments were obtained and it was found that the differences in values of optimized model parameters and water budget components reflect those in the hydrologic cycle among them.

  • PDF