• Title/Summary/Keyword: surface rolling

Search Result 544, Processing Time 0.025 seconds

A Study on the Change of Suface Characteristics by plane suface Rolling(l) (평면 Rolling에 의한 표면특성 변화에 관한 연구(l))

  • 김희남
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.1-5
    • /
    • 1997
  • The plane surface rolling, one of the plastic working process, good surface condition due to increase of surface roughness and hardness. It is well known that mechanism of surface rolling depends upon rolling conditions such as rolling speed, contact pressure, step length of rolling, the shape of roller and mechanical properties of material. In this study, the optimal value of the above parameter on the surface roughness were investigated by using the rolling tool with NACHI 6000ZZ ball bearing outer races on machine structure carbon steel[SM45C]

  • PDF

Effects of Rolling Numbers and Feeds on Surface Deformation in Surface Rolling of Cast Iron (주철의 표면로울링에서 이송량과 로울링 회수에 따른 변화 연구)

  • Yuck, Kweng-Su;Lee, Yong-Chul;Kwak, Soo-Heon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.3
    • /
    • pp.68-77
    • /
    • 1989
  • The surface rolling for cylindrical surface of a grey cast iron was carried out using a lathe with a simple newly-designed tool system. A surface rolling tool used was steel ball whose diameter was 3/8 inch (9.525mm) The effects of rolling feeds and number of rolling on surface rolling were investigated. The contact pressure between ball and workpiece which was considered as Hertz's contact problem was examined and the track of motion of a ball on the cylindrical surface of a work- piece was measured according to the rolling feed. The results obtained were as follows; 1. The roughness of the machined surface which was originally 5.3 .approx. 28 umRz decreased to 1.2 .approx. 5 umRz according to rolling feeds and numbers of rolling. 2. The hardness increased from Hv 260 to Hv 290 .approx. 310 through 2 .approx. 4 rollings according to the roughness of machined surfaces. 3. The reduction of diameter was found to be proportional to the variations of roughness of previous machined surfaces. About 60% to 90% of reduction in diameter was made during the first rolling process. 4. An equation relating the reduction of diameter and the variation of surface roughness after surface rolling was presented using a geometric surface model. 5. An equation for the calculation of dynamic contact area between pressure ball and workpiece according to the rolling feed was presented.

  • PDF

The effect of ball diameter upon surface accuracy in surface rolling with cast iron (주철의 서어피스 로울링에 있어서 가압 볼의 직경이 표면정밀도에 미치는 영향)

  • 허명규;최홍식;육광수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1071-1082
    • /
    • 1988
  • Surface rolling is one of the micro plastic processes which yields local deformation of surface, and improves surface roughness, hardness and fatigue strength. With the use of gray cast iron (GC 30) as material for experiment, the changes in surface roughness were investigated. A number of previous theses were refered to the effects of surface rolling for this study. With the use of steel ball of excellent in surface roughness and hardness, and with the applied force 20Kgf, surface rolling was performed. The summary of the experiment is as follows: (1) With the fixed applied force 20Kgf and the ball of 8.726mm in diameter, surface roughness was found to be the most excellent. (2) Increase in hardness was most prominent in the first rolling, but less effective in the succeeding rolling. (3) Reduction on diameter was affected by the previous process before rolling, and about 70 to 90% of reduction was made in the first rolling.

An effect of load on surface roughness in surface rolling (표면 로울링시 가압력이 표면 조도에 미치는 영향)

  • 강명순;김희남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.935-944
    • /
    • 1987
  • The surface rolling, one of the plastic working processes, provides good surface roughness with the reduction of diameter and the increase of surface hardness. In this study three Nachi 6000ZZ bearing were used for surface rolling on ductile cast iron. The results obtained are as follows; (1) The good surface roughness can be obtained with roller surface radius of curvature of 24mm after the 2nd rolling. (2) The surface roughness of ductile cast iron was 0.48.mu.mRmax by the contact pressure of 140kgf/mm$^{2}$ and surface hardness was Hv 395 with roller surface radius of curvature of 24mm after the 2nd rolling. (3) The reduction of specimen diameter of ductile cast iron were -12.8.mu.m due to rolling. (4) Within the diameter variation of -11.mu.m, surface roughness and surface hardness were increased, but at the range of exceeding -14.mu.m of the diameter variation the surface roughness became worse and the surface roughness became worse and the surface hardness was increased. (5) Dynamic contact area was about 25% to 30% of static contact area. The calculated contact pressure showed a good agreement with the experimental contact pressure.

A Study of Surface Defect Initiation in Groove Rolling Using Finite Element Analysis (유한요소해석을 이용한 공형 압연에서의 표면흠 발생 연구)

  • Na, D.H.;Huh, J.W.;Lee, Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.333-336
    • /
    • 2008
  • The groove rolling is a process that transforms the bloom or billet into a shape with circular section through a series of rolling. Inhibition of surface defect generation in groove rolling is a matter of great importance and therefore many research groups proposed a lot of models to find the location of surface defect initiation. In this study, we propose a model for maximum shear stress ratio over equivalent strain to catch the location of surface defect onset. This model is coupled with element removing method and applied to box groove rolling of POSCO No. 3 Rod Mill. Results show that proposed model in this study can find the location of surface defect initiation during groove rolling when finite element analysis results is compared with experiments. The proposed criterion has been applied successfully to design roll grooves which inhibits the generation of surface defect.

  • PDF

Modeling and Controlling of Surface Defect Initiation and Growth in Groove Rolling (공형 압연에서의 표면흠 성장 모델링 및 제어 방법 연구)

  • Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.607-612
    • /
    • 2008
  • The groove rolling is a process that transforms the bloom or billet into a shape with circular section through a series of rolling. Inhibition of surface defect generation in groove rolling is a matter of great importance and therefore many research groups proposed a lot of models to find the location of surface defect initiation. In this study, we propose a model for maximum shear stress ratio over equivalent strain to catch the location of surface defect onset. This model is coupled with element removing method and applied to box groove rolling of POSCO No.3 Rod Mill. Results show that proposed model in this study can find the location of surface defect initiation during groove rolling when finite element analysis results is compared with experiments. The proposed criterion has been applied successfully to design roll grooves which inhibit the generation of surface defect.

Modeling of Blend Surfaces by Bezier Surface Patches (비지어곡면에 의한 블렌드곡면의 모델링)

  • 주상윤
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.122-129
    • /
    • 1997
  • Ball rolling blending is a popular technique for blending between parametric surfaces. The ball rolling blend surface is conceptually a trajectory of a ball rolling between two base sufaces. It is constructed by sweeping a circular arc along a ball contact curve pair. Since a ball rolling blend surfaces does not have a polynomial form like a Bezier surface patch, it is impossible to apply this method directly to a commercial CAD/CAM system. In this paper an algorithm is developed to approximate a ball rolling blend surface into Bezier surface patches. Least square method is applied to obtain proper Bezier surface patches under a given tolerance. The Bezier surface patches have degree three or more and guarantee VC1-continuity.

  • PDF

A study on rolling materials and work roll wear in the cold rolling

  • Jeon, Eon-Chan;Kim, Soon-Kyung;Kim, Moon-Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.128-134
    • /
    • 1993
  • Work roll wear in the cold rolling of mild steel strip is strongly affected by rolling materials, rolling conditions and lubrication. The tests were performed to find the effects of rolling materials under the same lubrication conditions. The obtained results are as follfws; 1) The decrease in surface roughness of work roll is more rapid in that case of continuously cast A1-killed steel strip than ingot cast steel strip. In rolling of continuously cast A1-killed steel strip, worn powder rich in A1$\_$2/O$\_$3/sticks to the work roll surface, and so it makes the mirror surface of work roll accelerate. 2) Amount of work roll wear is small in rolling of continuously cast A1-killed strip. 3) In rolling of continously cast A1-killed steel strip, it is necessary to put up the intial surface roughness of work roll in order to prevent work roll slip.

  • PDF

Investigation of rolling resistance and surface damage of rolling elements (구름계의 구름저항 및 표면파손현상의 실험적 고찰)

  • Cha, Kum-Hwan;Kim, Dae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2019-2028
    • /
    • 1997
  • It has been well established that resistant force and wear that occur during rolling motion depend on several factors such as material type, hardness, subsurface microstructure, applied load, and speed. The purpose of this work is to investigate the effect of microstructure and the state of deformed layer on the rolling contact characteristics in dry and lubricated rolling contacts. The results of this work show that the rolling resistance behavior depends on the state of the deformed layer. Also, lubrication can reduce the plastic flow at the surface but may still have an effect on the subsurface strain. The cross-sectional view of the microstructure shows that surface traction has a difinite effect on the morphology of the surface region. That is, significant slip seems to have taken place between the ball than those of the dry rolling case. The surface generation effects were significantly less compared to the case of dry rolling contact.

Study on the effect of the surface rolling condition to the surface roughness (표면 Rolling시 작업조건이 표면조도에 미치는 영향)

  • 강명순;김희남
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.68-76
    • /
    • 1986
  • The surface rolling method which is one of the plastic deformation processes increases the surface roughness and hardness of materials. In this study, three NACHI6000 ZZ bearing were used for surface rolling tool on the mild steel and high carbon steel. The purpose of this study is to investigate the effects of rolling speed, feed rate and contact pressure on the surface roughness. The following results have been obtained with the mild steel and high carbon steel. 1. The roller finishing method has increased surface roughness from 2.4 .mu.m Ra at initial ground surface to 0.17 .mu.m Ra-0.4 .mu.m Ra. 2. The contact pressure has influenced greatly on the surface roughness. There is an optimal contact pressure. 3. As the rolling speed and the feed rate decrease, the surface roughness improves. 4. The optimal contact pressure for the good surface roughness of SS40 and STC 3 has been at 213 Kgf/Cm$^{2}$ and 220 Kgf/Cm$^{2}$ respectively.

  • PDF