• 제목/요약/키워드: surface reactivity

검색결과 288건 처리시간 0.03초

무연솔더합금 (Lead-free Solder Alloys)

  • 이호영
    • 한국표면공학회지
    • /
    • 제35권4호
    • /
    • pp.218-231
    • /
    • 2002
  • As the environmental regulation worldwide emerges, most notably in Europe and Japan, the elimination of Pb usage in electronic assemblies has been an important issue for microelectronics assembly due to the inherent toxicity of Pb. This has provided an impetus towards the development of Pb-free solders. A major factor affecting alloy selection is the melting point, since this will have a major impact on the other polymeric materials used in microelectronic assembly and encapsulation. Other important manufacturing issues are cost, availability, and wetting characteristics. Reliability related properties include mechanical strength, fatigue resistance, coefficient of thermal expansion and reactivity with substrate. In this article, Pb-free solder alloys have been proposed so far have been reviewed and are summarized.

Gas Nitriding Mechanism in Titanium Powder Injection Molded Products

  • Osada, Toshiko;Miura, Hideshi;Yamagami, Takanobu;Nishiyabu, Kazuaki;Tanaka, Shigeo
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.773-774
    • /
    • 2006
  • Gas surface treatment is considered to be effective for titanium because of its high reactivity. In this study, we investigated the gas nitriding mechanism in titanium sintered parts produced by metal powder injection molding (MIM) process. The microstructure and nitrogen content of sintered MIM parts were greatly affected by nitriding conditions. Nitriding process strongly depended on the specimen size, for example, the size of micro metal injection molding (${\mu}-MIM$) product is so small and the specific surface is so large that the mechanical and functional properties can be modified by nitriding.

  • PDF

Carboxylated Nitrile Elastomer/Filler Nanocomposite: Effect of Silica Nanofiller in Thermal, Dynamic Mechanical Behavior, and Interfacial Adhesion

  • Mahaling R. N.;Jana G. K.;Das C. K.;Jeong, H.;Ha C. S.
    • Macromolecular Research
    • /
    • 제13권4호
    • /
    • pp.306-313
    • /
    • 2005
  • Surface modified nanofillers are often used as curative-cum reinforcing agents for functional polymers. The polymer nanofiller interaction depends on the curative systems used. In the present study the carboxylic group of the carboxylated nitrile elastomer participated in the reaction with Zn-ion coated nanosilica filler producing a type of ionomeric elastomer. The interaction at the molecular level thus produced a high modulus vulcanizate. In this case, the S and MBT system, as curative, had an edge over the MDA and DPG curative system. Interfacial adhesion was enhanced in the presence of Zn-ion-coated nanosilica filler associated with dynamic mechanical behavior. The inferior properties obtained in the case of the MDA and DPG curative system were due to the decreased reactivity of the silica surface, thus reducing interfacial adhesion.

REACTIVITY AND DURABILITY OF V2O5 CATALYSTS SUPPORTED ON SULFATED TIO2 FOR SELECTIVE REDUCTION OF NO BY NH3

  • Choo, Soo-Tae;Nam, Chang-Mo
    • Environmental Engineering Research
    • /
    • 제10권1호
    • /
    • pp.31-37
    • /
    • 2005
  • The selective catalytic experiments using both sulfated/sulfur-free titania and V2O5/TiO2 catalysts have been conducted for NO reduction by NH3 in a packed-bed, down-flow reactor. The sulfated and vanadia loaded titania exhibited higher activity for NO removal than the sulfur-free catalysts, where > 90% NO removal was achieved over the sulfated V2O5/TiO2 catalyst between 280∼500 C. The surface structure of vanadia species on the catalyst surface played a critical role in the high performance of catalysts in which the existence of monomeric/polymeric vanadate is revealed by Raman spectra studies. Water vapor and SO2 were added to the reacting system for the catalyst deactivation tests. At higher temperatures (T ≥ 350 C), little deactivation was observed over the sulfated V2O5/TiO2 catalysts, showing good durability against SO2 and water vapor, which is compared with deactivation at lower temperatures.

ICP-CVD를 이용한 $SnO_2$ 박막 저온 증착 (Low temperature preparation of $SnO_2$ films by ICP-CVD)

  • Lee, H.Y.;Lee, J.J.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 춘계학술발표회 초록집
    • /
    • pp.157-158
    • /
    • 2007
  • Tin oxide films were successfully crystallized without additional heating by inductively coupled plasma assisted chemical vapor deposition (ICP-CVD). The degree of crystallization was affected by the ICP power, hydrogen flow and ion bombardment induced by negative substrate bias. The substrate temperature was increased only up to $150^{\sim}180^{\circ}C$ by plasma heating, which suggests that the formation of $SnO_2$ crystalswas caused by enhanced reactivity of precursors in high density plasma. The hardness of deposited tin oxide films ranged from 5.5 to 11GPa at different hydrogen flow rates.

  • PDF

Preparation and Properties of Pelletized Activated Carbons Using Coconut Char and Coal-Tar Pitch

  • Yang, Seung-Chun;Lee, Young-Seak;Kim, Jun-Ho;Lim, Chul-Kyu;Park, Young-Tae
    • Carbon letters
    • /
    • 제2권3_4호
    • /
    • pp.176-181
    • /
    • 2001
  • A series of activated carbons were prepared from coconut shells and coal-tar pitch binder by physical activation with steam in this study. The effect of variable processes such as activation temperature, activation time and ratio of mixing was investigated for optimizing those preparation parameters. The activation processes were carried out continuously. The nitrogen adsorption isotherms at 77 K on pellet-shaped activated carbons show the same trend of Type I by IUPAC classification. The average pore sizes were about 19-21${\AA}$. The specific surface areas ($S_{BET}$) of pellet typed ACs increased with increasing the activation temperature and time. Specific surface area of AC treated for 90 min at temperature $900^{\circ}C$ was 1082 $m^2/g$. The methylene blue numbers continuously increased with increasing the activation temperature and time. On the other hand, iodine numbers highly increased till activation time of 60 min, but the rate of increase of iodine numbers decreased after that time. This indicates that new micropores were created and the existing micropores turned into mesopores and macropores because of increased reactivity of carbon surface and $H_2O$.

  • PDF

The First-principles View of Nanometal Alloy Catalysts

  • Ham, Hyung Chul;Hwang, Gyeong S.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.129-129
    • /
    • 2013
  • Nanometal alloy catalysts have been found to significantly increase catalytic efficiency, compared to the monometallic counterparts. This enhancement can be attributed to various alloying effects: i) the existence of uniquemixed-metal surface sites [the so called ensemble (geometric) effect]; ii) electronic state changes due to metal-metal interactions [the so called ligand (electronic) effect]; and iii) strain caused by lattice mismatch between the alloy components [the socalled strain effect]. In addition, the presence of low-coordination surface atoms and preferential exposure of specific facets [(111), (100), (110)] in association with the size and shape of nanoparticle catalysts [the so called shape-size-facet effect] can be another important factor for modifying the catalytic activity. However, mechanisms underlying the alloying effect still remain unclear owing to the difficulty of direct characterization. Computational approaches, particularly the prediction using first-principles density functional theory (DFT), can be a powerful and flexible alternative for unraveling the role of alloying effects in catalysis since those can give us quantitative insights into the catalytic systems. In this talk, I will present the underlying principles (such as atomic arrangement, facet, local strain, ligand interaction, and effective atomic coordination number at the surface) that govern catalytic reactions occurring on Pd-based alloys using the first-principles calculations. This work highlights the importance of knowing how to properly tailor the surface reactivity of alloy catalysts for achieving high catalytic performance.

  • PDF

Photoemission Study on the Adsorption of Ethanol on Chemically Modified TiO2(001) Surfaces

  • Kong, Ja-Hyun;Kim, Yu-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2531-2536
    • /
    • 2011
  • Ethanol is a prototype molecule used in probing catalytic reactivity of oxide catalysts such as $TiO_2$. In the present study, we adsorbed ethanol on $TiO_2$(001) at room temperature (RT) and the corresponding bonding state of ethanol was systematically studied by x-ray photoemission spectroscopy (XPS) using synchrotron radiation. Especially, we compared $TiO_2$(001) surfaces prepared in ultra-high vacuum (UHV) with different surface treatments such as $Ar^+$-sputtering and oxidation with molecular $O_2$, respectively. We find that the saturation coverage of ethanol at RT varies depending on the amount of reduced surface defects (e.g., $Ti^{3+}$) which are introduced by $Ar^+$-sputtering. We also find that the oxidized $TiO_2$(001) surface has other type of surface defects (not related to Ti 3d state) which can dissociate ethanol for further reaction above 600 K. Our C 1s core level spectra indicate clearly resolved features for the two chemically distinct carbon atoms from ethanol adsorbed on $TiO_2$(001), showing the adsorption of ethanol proceeds without C-C bond dissociation. No other C 1s feature for a possible oxidized intermediate was observed up to the substrate temperature of 650 K.

Performance of Hybrid Adhesives of Blocked-pMDI/Melamine-Urea-Formaldehyde Resins for the Surface Lamination on Plywood

  • Lubis, Muhammad Adly Rahandi;Park, Byung-Dae;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권2호
    • /
    • pp.200-209
    • /
    • 2019
  • To improve the water resistance of melamine-urea-formaldehyde (MUF) resins, different levels of blocked polymeric 4,4 diphenyl methane diisocyanate (B-pMDI) were blended with MUF resins to prepare B-pMDI/MUF hybrid adhesives, and their adhesion performances were evaluated for the surface lamination of fancy veneer on plywood. FT-IR spectra showed that the de-blocked -NCO groups reacted with the -OH of hydroxymethyl groups of the MUF resins to form urethane bonds at 2% B-pMDI/MUF, which was detected before and after their hydrolysis. The mass loss after the hydrolysis consistently decreased as the B-pMDI level increased, indicating an improvement in the water resistance. As the B-pMDI level increased, the activation energy of hybrid adhesives decreased, which improved the reactivity of the hybrid adhesives. Additionally, the water resistance improvement of the hybrid adhesives increased the tensile shear strength of the surface laminated plywood in semi-water proof and water-proof by 23 % and 8 %, respectively, at 2% B-pMDI level. This was likely due to the urethane linkages in the hybrid adhesives. However, the formaldehyde emission from plywood panels bonded with the hybrid adhesives increased in the dry state, indicating incomplete curing of the hybrid adhesives.

Study of PSII-treated PMMA, PHEMA, and PHPMA ; Investigation of Their Surface Stabilities

  • Hyuneui Lim;Lee, Yeonhee;Seunghee Han;Jeonghee Cho;Moojin suh;Kem, Kang-Jin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.204-204
    • /
    • 1999
  • The plasma source ion implantation(PSII) technique which is a method using high negative voltage pulse in plasma system has the potential to change the surface properties of polymer. PSII technique increase the surface free energy by introducing polar functional groups on the surface so that it improves reactivity, hydrophilicity, adhension, biocompatability, etc. However, the mobility of polymer chains enables the modified surface layers to adapt their composition to interfacial force. This hydrophobic recovery interrupts the stability of modified surfaces to keep for the long time. In this study, poly(methyl methacrylate)(PMMA), poly(2-hydroxyethyl methacrylate)(PHEMA), and polu(2-hydroxypropyl methacylate)(PHPMA) for contact lens application, were modified to improve the wettability with PSII technique and were investigated the surface stabilities. Polymer film was prepared with solution casting(3 wt.% solution) and was annealed at 11$0^{\circ}C$ under vacuum oven to remove solvent completely and to eliminate physical ageing. The thickness of the film measured by scanning electron microscopy (SEM) and surface profilometer was about 10${\mu}{\textrm}{m}$. Polymers were treated with different kinds of gases, pulse frequency, pulse with, pulse voltage, and treatment time. Even though PMMA, PHEMA, and PHPMA have similar repeat unit structure, the optimal treatment conditions and the tendency to hydrophobic recovery were different. PHPMA, more hydrophilic polymer than PMMA and PHEMA showd better wettability and stability after mild treatment. Surface tensions were obtained by water and diiodomethane contact angle measurements to monitor the relation between hydrophobic recovery and polymer structure. Different ion species in plasma change the polar component and dispersion component of polymer surface. For better wettability surface, the increase of polar component was a dominant factor. We also characterized modified polymer surfaces using x-ray photoelectron spectroscopy(XPS), secondary ion mass spectrometry(SIMS), Fourier Transform infrared spectroscopy(FT-IR), and SEM.

  • PDF