• Title/Summary/Keyword: surface pressure measurement

Search Result 482, Processing Time 0.035 seconds

Experimental Study Shock Waves in Superfluid Helium Induced by a Gasdynamic Shock Wave Impingement

  • Yang, Hyung-Suk;Nagai, Hiroki;Murakami, Masahide;Ueta, Yasuhiro
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.43-47
    • /
    • 2000
  • Two modes of shock waves, a compression shock wave and a thermal shock wave, propagating in He II have been investigated. The shock waves are at a time generated by the impingement of a gasdynamic shock wave onto a He II free surface in the newly developed superfluid shock tube facility. Superconductive temperature sensors, piezo-type pressure transducers and visualization photograph were used for the measurement of them and the phenomena induced by them were investigated in detail. It is found that the compression by a compression shock wave in He II causes temperature drop because He II has negative thermal expansion coefficient. the thermal shock wave is found to be of a single triangular waveform with a limited shock strength. The waveform is similar to that generated by stepwise strong heating from an electrical heater for relatively long heating time. In the experiments at the temperatures near the lambda temperature, no thermal shock wave is sometimes detected in shock compressed He II. It can be understood that shock compression makes He Ii convert to He I in which no thermal shock wave is excited.

  • PDF

Wind-induced tall building response: a time-domain approach

  • Simiu, Emil;Gabbai, Rene D.;Fritz, William P.
    • Wind and Structures
    • /
    • v.11 no.6
    • /
    • pp.427-440
    • /
    • 2008
  • Estimates of wind-induced wind effects on tall buildings are based largely on 1980s technology. Such estimates can vary significantly depending upon the wind engineering laboratory producing them. We describe an efficient database-assisted design (DAD) procedure allowing the realistic estimation of wind-induced internal forces with any mean recurrence interval in any individual member. The procedure makes use of (a) time series of directional aerodynamic pressures recorded simultaneously at typically hundreds of ports on the building surface, (b) directional wind climatological data, (c) micrometeorological modeling of ratios between wind speeds in open exposure and mean wind speeds at the top of the building, (d) a physically and probabilistically realistic aerodynamic/climatological interfacing model, and (e) modern computational resources for calculating internal forces and demand-to-capacity ratios for each member being designed. The procedure is applicable to tall buildings not susceptible to aeroelastic effects, and with sufficiently large dimensions to allow placement of the requisite pressure measurement tubes. The paper then addresses the issue of accounting explicitly for uncertainties in the factors that determine wind effects. Unlike for routine structures, for which simplifications inherent in standard provisions are acceptable, for tall buildings these uncertainties need to be considered with care, since over-simplified reliability estimates could defeat the purpose of ad-hoc wind tunnel tests.

In-situ Growth of Epitaxial PbVO3 Thin Films under Reduction Atmosphere

  • Oh, Seol Hee;Jin, Hye-Jin;Shin, Hye-Young;Shin, Ran Hee;Yoon, Seokhyun;Jo, William;Seo, Yu-Seong;Ahn, Jai-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.361.1-361.1
    • /
    • 2014
  • PbVO3 (PVO), a polar magnetic material considered as a candidate of multiferroic, has ferroelectricity along the c-axis and 2-dimensional antiferromagnetism lying in the in-plane through epitaxial growth [1,2]. PVO thin films were grown on LaAlO3 (001) substrates under reduction atmosphere from a stable Pb2V2O7 sintered target using pulsed laser deposition method. Epitaxial growth of the PVO films is possible only under Ar atmospheren with no oxygen partial pressure. X-ray diffraction was used to investigate the phase formation and texture of the films. We confirmed epitaxial growth of the PVO films with crystalline relationship of PbVO3[001]//LaAlO3[001] and PbVO3[100]//LaAlO3[100]. In addition, surface morphology of the films displays drastic changes in accordance with the growth conditions. Elongated PVO grains are related to the Pb2V2O7 pyrochlore structure. The relation between structural deformation and ferroelectricity in the PVO films was examined by local measurement of piezoresponse force microscopy.

  • PDF

Properties of $TiO_2$ thin films deposited by ion-beam assisted reactive magnetron sputtering (이온빔 보조 반응이온 마그네트론 스퍼터링으로 증착된 $TiO_2$박막의 특성)

  • 김성화;이재홍;황보창권
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.3
    • /
    • pp.141-150
    • /
    • 2002
  • Titanium oxide thin films were deposited by DC reactive magnetron sputtering(RMS) with Ar ion-beam assistance using end-Hall ion source at low oxygen partial pressure and long target-to-substrate distance. The optical and structural properties of deposited films were investigated by the measurement of measured transmittance and reflectance, atomic force microscope(AFM), and X-ray diffraction(XRD). The results show that the Ax ion-beam assisted RMS for titanium oxide thin films induces the higher packing density, lower absorption, and smoother surface than the conventional RMS, suggesting that it can be employed in deposition of optical dielectric coatings.

Measurement and FEM Analysis of Elastic Deformation According to the Forging Stages in Cold Forging Die (냉간단조용 금형의 변형모드에 따른 탄성변형량의 측정 및 유한요소 해석)

  • 이대근;이영선;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.112-116
    • /
    • 2002
  • In cold forging, the elastic behavior of the die has a direct influence on the accuracy of the forging part. And the die dimension is continuously changed during the loading, unloading, and ejecting stage. In this paper, we evaluated the elastic deflections of cold forging die during loading, unloading, and ejecting stage. Uni-axial strain gauges are used to measure elastic strain of die during each forging stage. Strain gauges are attached on the surface of die. A commercial F.E.M code, DEFORM-2D$\^$TM/ is used to predict elastic strain of die. Two method of F.E.M. analysis are used to compare with measured and calculated elastic strain. One is to regard the die as rigid body over forging cycle. And then, the die sass is analyzed by loading the die with pressure from the forging part. The other is to regard the die as elastic body from forging cycle. The elastic strain of die is calculated and the die is elastically deformed at each strop. The calculated results under the elastic die assumption are well agreed with experimental data using strain gauges.

  • PDF

Integrated Process for Development of an Optimal Axial Flow Fan (Design, RP, Measurement, Injection Molding, Assembly) (최적 축류팬 개발을 위한 통합공정 (설계, 시제품제작, 측정, 금형가공, 사출, 조립))

  • 박성관;최동규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.201-209
    • /
    • 1998
  • To develop timely an optimal fan, a design system and a new manufacturing process used step by step have to be integrated. A small sized optimal fan for refrigerators, that was the goal on this project, was developed by the following principal processes. All processes are technologically linked in many directions: The existing fan was measured through reverse engineering. The measured data was used for the basic source of 3D design. The performance tests were carried and used as the data for the evaluation of the existing fan. Flow analysis by FANS-3D/sup [1]/ was performed at the given information (pressure drop and flow rate) to find out the configuration of optimal fan design. The flow patterns were investigated to measure the performance of fan through numerical experiment. The grid point data obtained by the above analysis turned into 3D high efficiency fan model by using CATIA. The product was manufactured by RP process (SLS, SLA) and tested the characteristic curves of the developed fan to compare with the existing fan. The modification of fan design were all examined to see any change in performance and checked to find any deficiency in assembling the fan into a duct. After the plastics flow analysis of the injection molding cycle to ensure acceptable quality fan, an optimal mold was processed by using tool-path for the newly designed fan.

  • PDF

Analysis of Flow and Heat Transfer in Swirl Chamber for Cooling in Hot Section (고온부 냉각을 위한 스월챔버내의 유동 및 열전달 해석)

  • Lee Kang-Yeop;Kim Hyung-Mo;Han Yeoung-Min;Lee Soo-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.71-78
    • /
    • 2002
  • All modem, aerospace gas turbines must operate with hot stage gas temperature several hundreds of degrees hotter than the melting temperatures of the materials used in their construction. Complicated cooling schemes need to be employed in the combustor walls and In the high pressure turbine stages. Internal passages are cast or machined into the hot sections of aero-gas turbine engines and air from the compressor is used for cooling. In many cases, the cooling system is engineered to utilize jets of high velocity air, which impinge on the internal surfaces of the components. They are divided by Impinging cooling method and Vortex cooling method. Specially, Research of new cooling system(Vortex cooling method) that overcome inefficiency of film cooling and limitation of space. The focus of new cooling system that improve greatly cooling efficiency using quantity's cooling air which is less is set in surface heat transfer elevation. Therefore, In this study, the numerical analysis have been performed for characteristic of flow and thermal in the swirl chamber and compared with the flow field measurement by LDV. especially, for understanding of high heat transfer efficiency in vicinity of wall. we considered flow structure and mechanism of vortex and heat transfer characteristic in variation of Reynolds number.

  • PDF

A System Engineering Approach to Predict the Critical Heat Flux Using Artificial Neural Network (ANN)

  • Wazif, Muhammad;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.38-46
    • /
    • 2020
  • The accurate measurement of critical heat flux (CHF) in flow boiling is important for the safety requirement of the nuclear power plant to prevent sharp degradation of the convective heat transfer between the surface of the fuel rod cladding and the reactor coolant. In this paper, a System Engineering approach is used to develop a model that predicts the CHF using machine learning. The model is built using artificial neural network (ANN). The model is then trained, tested and validated using pre-existing database for different flow conditions. The Talos library is used to tune the model by optimizing the hyper parameters and selecting the best network architecture. Once developed, the ANN model can predict the CHF based solely on a set of input parameters (pressure, mass flux, quality and hydraulic diameter) without resorting to any physics-based model. It is intended to use the developed model to predict the DNBR under a large break loss of coolant accident (LBLOCA) in APR1400. The System Engineering approach proved very helpful in facilitating the planning and management of the current work both efficiently and effectively.

Artificial Intelligence-Based Descriptive, Predictive, and Prescriptive Coating Weight Control Model for Continuous Galvanizing Line

  • Devraj Ranjan;G. R. Dineshkumar;Rajesh Pais;Mrityunjay Kumar Singh;Mohseen Kadarbhai;Biswajit Ghosh;Chaitanya Bhanu
    • Corrosion Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.228-234
    • /
    • 2024
  • Zinc wiping is a phenomenon used to control zinc-coating thickness on steel substrate during hot dip galvanizing by equipment called air knife. Uniformity of zinc coating weight in length and width profile along with surface quality are most critical quality parameters of galvanized steel. Deviation from tolerance level of coating thickness causes issues like overcoating (excess consumption of costly zinc) or undercoating leading to rejections due to non-compliance of customer requirement. Main contributor of deviation from target coating weight is dynamic change in air knives equipment setup when thickness, width, and type of substrate changes. Additionally, cold coating measurement gauge measure coating weight after solidification but are installed down the line from air knife resulting in delayed feedback. This study presents a coating weight control model (Galvantage) predicting critical air knife parameters air pressure, knife distance from strip and line speed for coating control. A reverse engineering approach is adopted to design a predictive, prescriptive, and descriptive model recommending air knife setups that estimate air knife distance and expected coating weight in real time. Implementation of this model eliminates feedback lag experienced due to location of coating gauge and achieving setup without trial-error by operator.

Experimental Study on the Determination of Heat Transfer Coefficient for the KURT (KURT 내 열전달계수 결정에 관한 실험적 연구)

  • Yoon, Chan-Hoon;Kwon, Sang-Ki;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.507-516
    • /
    • 2009
  • In cases of high-level radioactive waste repositories, heat load is apparent by radioactive waste decay. The safety of a waste repository would be influenced by changing circumstances caused by heat transfer through rock. Thus, a ventilation system is necessary to secure the waste repository. The first priority for building an appropriate ventilation system is completing a computer simulation research with thermal rock properties and a heat transfer coefficient. In this study, the heat transfer coefficient in KURT was calculated using the measurement of inner circumstance factors that include dry bulb and wet bulb temperature, rock surface temperature, and barometric pressure. The heater that is 2 m in length and 5 kw in capacity heats the inside of rock in the research module by $90^{\circ}C$. As a result of determining the heat transfer coefficient in the heating section, the changes of heat transfer coefficient were found to be a maximum of 7.9%. The average heat transfer coefficient is approximately 4.533 w/$m^2{\cdot}K$.