• Title/Summary/Keyword: surface pressure measurement

Search Result 480, Processing Time 0.023 seconds

Evaluation of the High Purity ZnTe which is an Far-Infrared Sensor Material (적외선 센서 재료로 사용되는 고순도 ZnTe박막의 평가)

  • Kim, B.J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.5
    • /
    • pp.305-311
    • /
    • 2002
  • Optical measurements have been used to study the biaxial tensile strain in heteroeptaxial ZnTe epilayers on the (100) GaAs substrate by hot wall epitaxy (HWE) with Zn reservoir. It is effect on the low-temperature photoluminescence spectrum of the material. Optimum growth condition has been determined by a four-crystal rocking curve (FCRC) and a low temperature photoluminescence measurement (PL). It was found that Zn partial pressure from Zn reservoir has a strong influence on the quality of grown films. Under the determined optimum growth condition, ZnTe epitaxial films with thickness of 0.72~24.8$\mu\textrm{m}$ were grown for studying the effect of the thickness on crystalline quality. The PL and FCRC results indicated that the quality of ZnTe films becomes higher rapidly with increase of thickness up to 6$\mu\textrm{m}$. The best value of the FWHM of the four crystal rocking curve, 66 arcsec, was obtained on the film with 12$\mu\textrm{m}$ in thickness. The PL spectrum shows the splitted strong free exciton emissions and very weak deep band emissions. These results show the high quality of films.

Characterization of a Remote Inductively Coupled Plasma System (원격 유도결합 플라즈마 시스템의 특성 해석)

  • Kim, Yeong-Uk;Yang, Won-Kyun;Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.4
    • /
    • pp.134-141
    • /
    • 2008
  • We have developed a numerical model for a remote ICP(inductively coupled plasma) system in 2D and 3D with gas distribution configurations and confirmed it by plasma diagnostics. The ICP source has a Cu tube antenna wound along a quartz tube driven by a variable frequency rf power source($1.9{\sim}3.2$ MHz) for fast tuning without resort to motor driven variable capacitors. We investigated what conditions should be met to make the plasma remotely localized within the quartz tube region without charged particles' diffusing down to a substrate which is 300 mm below the source, using the numerical model. OES(optical emission spectroscopy), Langmuir probe measurements, and thermocouple measurement were used to verify it. To maintain ion current density at the substrate less than 0.1 $mA/cm^2$, two requirements were found to be necessary; higher gas pressure than 100 mTorr and smaller rf power than 1 kW for Ar.

An Advanced Study on the Development of Marine Lifting Devices Enhanced by the Blowing Techniques

  • Ahn Haeseong;Yoo Jaehoon;Kim Hyochul
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.4
    • /
    • pp.1-9
    • /
    • 2004
  • High lifting devices used for control purposes have received much attention in the marine field. Hydrofoils for supporting the hull, roll stabilizer fins for developing the motion damping performance, rudders for maneuverability are the well-known devices. In the present study, the ability of the rudder with flap to produce high lift was analyzed. The boundary layer control, one of the flow control techniques, was adopted. Especially, to build the blown flap, a typical and representative type of a boundary layer control, a flapped rudder was designed and manufactured so that it could eject the water jet from the gap between the main foil and the flap to the flap surface tangentially. And it was tested in the towing tank. Simultaneously, to know the information about the 2-dimensional flow field, a fin model with similar characteristics as the rudder model applicable for the motion control was made and tested in the cavitation tunnel. In addition, local flow measurements were carried out to obtain physical information, for example, a surface pressure measurement and flow visualization around the flap. And CFD simulation was used to obtain information difficult to collect from the experiment about the 2-dimensional flow.

The Characteristics of Residual Stresses in the Welded Joint of P92 Steel for Fossil Power Plant by the X-ray Diffraction (X-ray 회절을 이용한 화력발전소용 P92 강 용접부의 잔류응력 특성)

  • Hyun, Jung-Seob;Yoo, Keun-Bong;Choi, Hyun-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.116-123
    • /
    • 2008
  • In the fossil power plant, the reliability of the components which consist of the many welded parts depends on the quality of welding. The residual stress is occurred by the heat flux of high temperature during weld process. This decreases the mechanical properties as the strength of fatigue and fracture or causes the stress corrosion cracking and fatigue fracture. Especially, the accidents due to the residual stress occurred at the weld parts of high-temperature and high-pressure pipes and steam headers. Also, the residual stress of the welded part in the recently constructed power plants has been brought into relief as the cause of various accidents. The aim of this study is the measurement of the residual stress using the x-ray diffraction method. The merits of this are more accurate and applicable than other methods. The materials used for the study is P92 steel for the use of high temperature pipe on super critical condition. The variables of tests are the post-weld heat treatment, the surface roughness and the depth from the original surface. The test results were analyzed by the distributed characteristics of the full width at half maximum intensity (FWHM) in x-ray diffraction intensity curve and by the relation of hardness with FWHM.

Electrochemical stability of La0.6Sr0.4Co0.2Fe0.8O3-δ as a cathode for SOFC

  • Oh, Mi-Young;Jeong, Yong-Hoon;Oh, Se-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.498-506
    • /
    • 2016
  • Electrochemical measurement using a LSCF6428 electrode was performed to estimate the oxygen potential gradient in the electrode layer and a long time stability test was performed by applied potential to learn the overpotential effect on the LSCF6428 electrode. By fitting the observed impedance spectra, it was obtained that the amount of faradic current decreased with distance from cathode/electrolyte interface. Oxygen potential gradient was estimated to occur within 1 um region from the cathode/electrolyte interface at an oxygen partial pressure of 10-1 bar. The segregation of cation rich phases in the LSCF6428 electrode suggests that kinetic decomposition took place. However, impedance response after applying the potential showed no changes in the electrode compared with before applying potential. The obtained results suggest that segregation of a secondary phase in a LSCF6428 cathode is not related to performance degradation for solid oxide fuel cells (SOFCs).

A Study on the Laminar Burning Velocity of Synthetic Gas of Coal Gasification(H2/CO)-Air Premixed Flames (석탄가스화 합성가스(H2/CO)-공기 예혼합화염의 층류 연소속도에 관한 연구)

  • Jeong, Byeonggyu;Lee, Keeman
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.493-502
    • /
    • 2012
  • Syngas laminar burning velocity measurements were carried out at atmospheric pressure and ambient temperature using the Bunsen flame configuration with nozzle burner as a fundamental study on flame stability of syngas fuel. Representative syngas mixture compositions ($H_2$:CO) such as 25:75%, 50:50% and 75:25% and equivalence ratios from 0.5 to 1.4 have been conducted. Average laminar burning velocities have been determined by the stabilized nozzle burner flames using the angle method, radical surface area method and compared with the data obtained from the other literatures. And the results of each experimental methodologies in the various composition ratios and equivalence ratios were coincided with the result of numerical simulation. Especially, it was confirmed that there was necessary to choice a more accurate measurement methodology even the same static flame method for the various composition ratios of syngas fuel including hydrogen. Also, it was reconfirmed that the laminar burning velocities gradually increased with the increasing of hydrogen content in a fuel mixture.

Measurement of the Displacement Currents Induced by the Monolayers on the Water surface of KUHN Type LB Apparatus (KUHN형 LB장치의 수면상에 전개된 단분자막의 변위전류 측정)

  • 박태곤;송경호;박근호;권명수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.83-86
    • /
    • 1994
  • On this paper, the structural changes of molecules on the water surface were monitored by the measuring system of displacement currents. The measuring system was constructed at home-made Kuhn type LB(Langmuir -Blodgett) deposition apparatus. Solutions of 4-octyl -4\\`- (5-car boxy$.$ -pentamethyleneoxy) azobenzene molecules (8A5H) and stearic acid(C$\_$18/) were spreaded at the air-water interface respectively, and the currents inducted by the dynamic behavior of molecules were measured when the molecules were the molecules were pressed by barrier. From C$\_$18/ mo1ecules two distinct peaks of displacement currents were obtained, which show that the orientations of mo1ecules were charged largely at these Points. The reversibility of displacement currents by compression and expansion was obtained from 8A5H molecules, which shows the compressed molecules which shows the compressed molecules have a tendency to disperse after the compression. But it was not obtained from C$\_$18/ molecules which means that this molecules disperse not easily by decreasing the pressure of the barrier.

  • PDF

MOVPE GROWTH OF HgCdTe EPILAYER WITH ARSENIC DOPING

  • Suh, Sang-Hee;Kim, Jin-Sang;Song, Jong-Hyeong;Kim, Je-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.325-329
    • /
    • 1996
  • We report on p-type arsenic doping of metalorganic vapor phase epitaxially (MOVPE) grown HgCdTe on (100) GaAs. HgCdTe was grown at $370^{\circ}C$ in a horizontal reactor with using dimethy-cadmium, diisoprophyltelluride, and elemental Hg. We used tris-dimethylaminoarsenic (DMAAs) as the metalorganic for p-doping. 4micron thick CdTe and subsequently 10micron thick HgCdTe were grown on (100) GaAs substrate. Interdiffused multilayer process in which thin CdTe and HgTe layers are grown alternately and interdiffused to obtain homogeneous HgCdTe alloys was used. Arsenic was doped during CdTe growth cycle. After growth HgCdTe was annealed at $415^{\circ}C$ for 15 min and then annealed again at $220^{\circ}C$ for 3 hr, both with Hg-saturate condition. We could obtain p-doping from 2.5$\times$$10^{16}$ to 6.6$\times$$10^{17}$$cm^{-3}$, depending on the DMAAs partial pressure. With the dual Hg-annealing, activation of arsenic was aboutt 90%, which was confirmed by SIMS measurement. With only low temperature annealing at $220^{\circ}C$ for 3hr, activation efficiency was about 50%.

  • PDF

Simulation and Characteristic Measurement with Sputtering Conditions of Triode Magnetron Sputter

  • Kim, Hyun-Hoo;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.1
    • /
    • pp.11-14
    • /
    • 2004
  • An rf triode magnetron sputtering system is designed and installed its construction in vacuum chamber. In order to calibrate the rf triode magnetron sputtering for thin films deposition processes, the effects of different glow discharge conditions were investigated in terms of the deposition rate measurements. The basic parameters for calibrating experiment in this sputtering system are rf power input, gas pressure, plasma current, and target-to-substrate distance. Because a knowledge of the deposition rate is necessary to control film thickness and to evaluate optimal conditions which are an important consideration in preparing better thin films, the deposition rates of copper as a testing material under the various sputtering conditions are investigated. Furthermore, a triode sputtering system designed in our team is simulated by the SIMION program. As a result, it is sure that the simulation of electron trajectories in the sputtering system is confined directly above the target surface by the force of E${\times}$B field. Finally, some teats with the above 4 different sputtering conditions demonstrate that the deposition rate of rf triode magnetron sputtering is relatively higher than that of the conventional sputtering system. This means that the higher deposition rate is probably caused by a high ion density in the triode and magnetron system. The erosion area of target surface bombarded by Ar ion is sputtered widely on the whole target except on both magnet sides. Therefore, the designed rf triode magnetron sputtering is a powerful deposition system.

Analysis of Friction Mechanisms Associated with Write Feeling (필기 감성에 관련한 마찰메커니즘 분석)

  • Park, JinHwak;Kim, MinSeob;Lee, YoungZe
    • Tribology and Lubricants
    • /
    • v.32 no.6
    • /
    • pp.207-211
    • /
    • 2016
  • To interpret the perception that originates from tactile sensibility during people touch and recognize the object surfaces, this study focuses on the development of a friction model that can describe the interaction of a stylus pen sliding over the counter surfaces. In addition, the study includes several other experimental factors such as the pressure, temperature, and topology of surface, which can have an effect on the emotional user experience concerning various surfaces; this research aims to suggest a method to quantitatively evaluate the relation between these experimental parameters and emotional user experience. Accordingly, the objective of research comprises the friction characteristic technology for measurement of fine tribological behavior and a standard to quantify the emotional feedback. Existing panels or input devices that provide interaction feedback about user actions simply operate with a single frequency vibration or sound response. On the contrary, this research investigates various interaction characteristics including friction force, frequency, and surface topology synthetically. Using the developed model, which can explain the relation between the friction parameters and emotional user experience, developers can design their product in order to provide the user with expected emotional sensibility. Consequently, it can contribute to reduce the development cost about sensitivity model.