Browse > Article

Evaluation of the High Purity ZnTe which is an Far-Infrared Sensor Material  

Kim, B.J. (Institute for Advanced materials Processing, Tohoku University)
Publication Information
Journal of the Korean institute of surface engineering / v.35, no.5, 2002 , pp. 305-311 More about this Journal
Abstract
Optical measurements have been used to study the biaxial tensile strain in heteroeptaxial ZnTe epilayers on the (100) GaAs substrate by hot wall epitaxy (HWE) with Zn reservoir. It is effect on the low-temperature photoluminescence spectrum of the material. Optimum growth condition has been determined by a four-crystal rocking curve (FCRC) and a low temperature photoluminescence measurement (PL). It was found that Zn partial pressure from Zn reservoir has a strong influence on the quality of grown films. Under the determined optimum growth condition, ZnTe epitaxial films with thickness of 0.72~24.8$\mu\textrm{m}$ were grown for studying the effect of the thickness on crystalline quality. The PL and FCRC results indicated that the quality of ZnTe films becomes higher rapidly with increase of thickness up to 6$\mu\textrm{m}$. The best value of the FWHM of the four crystal rocking curve, 66 arcsec, was obtained on the film with 12$\mu\textrm{m}$ in thickness. The PL spectrum shows the splitted strong free exciton emissions and very weak deep band emissions. These results show the high quality of films.
Keywords
ZnTe; HWE; heteroepitaxy; free exciton; XRD; photoluminescence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Ekaya, and T. Tacuchi : J. J. Appl. Phys. 28 (8) (1989) 1341   DOI
2 D.L. Smith and V.Y. Pickhardt : J. Appl.Phys. 46(1975) 2366   DOI   ScienceOn
3 P. Cheuvart, U.EL-hanami, D.Schneider, and R.Triboulet : J.Crystal Growth 101 (1990) 270   DOI   ScienceOn
4 S. Dosho, Y. Takemura. M. Konagai, and K. Ta kahashi : J.Appl.Phys. 66 (1989) 2597   DOI
5 A. Lopezo-Otero : Thin Solid Films 49 (1987) 3   ScienceOn
6 M.Isshiki, T.Kyotani, K.Masumot, W.Uchida and S.Suto : Phys. Rev. B.36 (1987) 2568   DOI   ScienceOn
7 H. Venghaus, and P. J. Dean : Phys. Rev. B 21 (1980) 1596   DOI
8 Y. Zhang , B.J. Skromme, and F.S. Turco-Sandroff, Phys. Rev. B46 (1992) 3872
9 G. Kudlek, N. Presser, J. Gutowski, K. Hangerl, E. Abramof, and H. Sitter : J. Crystal Growth117 (1992) 290   DOI   ScienceOn
10 B.J.Kim, J.F. Wang, Y. Ishikawa and M. Isshiki : J. Crystal Growth (to be published)
11 E. Abramolf, K. Hingerl, A. Pesek, and H. Sitter, Semiconductor Sci. Technol.6 (1991) A80   DOI   ScienceOn
12 S.N. Nam, J.K. Rhee, B.S. O, K.S. Lee, Y.D. Choi, G.N. Jeon. and C.H. Lee : J. Crystal Growth 180 (1997) 47   DOI   ScienceOn
13 Y. Zhang , B. Skromme, and F.S. Turco-Sandroff : J. Phys. Rev. B46 (1992) 3872
14 A. Naumov, K, Wolf, T, Reismger, H, Stanzl, and W. Gebhardt : J, Appl, Phys. 73 (1993) 2581   DOI   ScienceOn
15 J.Han, T.S.Stavrinides, M.Kobayashi, R.L.Gu-nshor, M.M.Hagerott, and A. V. Nurmikko, : Appl. Phys.Lett.62 (1993) 840   DOI
16 H.Shtrikman, A.Raizman, and M.oron, D. Eger J. Crystal Growth 88 (1988) 522   DOI   ScienceOn
17 H.E.Ruda, Ed. : Widegap ?? - V? compounds for Opto-electronic Applications Chapman & Hall, London (1992)
18 P.J. Dean and J. L. Merz : Phys. Rev. 178 (1969) 1310   DOI
19 J.F. Wang, K. KiKuchi, B.H. Koo, Y. Ishikawa, W. Uchida and M. Isshiki : J. Crystal Growth 187(1998) 373   DOI   ScienceOn