• Title/Summary/Keyword: surface penetration sealer

Search Result 11, Processing Time 0.023 seconds

Improvement of the Exisiting Nuclear Concrete Structures Durability Using Surface Penetration Sealer (표면침투제를 이용한 원전구조물의 내구성 향상)

  • Lho, Byeong-Cheol;Choi, Kyu-Hyung;Lee, Sang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.257-260
    • /
    • 2004
  • The durability and water - resisting capability of nuclear concrete structures can be greatly improved as the density of concrete surface increases. Applying the surface penetration sealer to the concrete surface can increase the surface density. Therefore, the objective of this study is to identify the most suitable surface penetration sealer based on lab test. The considered parameters rate and water resistance and absorbance rate of the concrete specimen after the penetration sealer are applied. The experimental study resulted in the identification of the two most suitable surface penetration sealer based on their performance.

  • PDF

Evaluation on Resistance of Chloride Attack and Freezing and Thawing of Concrete with Surface Penetration Sealer (표면 침투제에 따른 콘크리트의 염화물 침투와 동결융해 저항성 평가)

  • Kim Myung Yu;Yang Eun Ik;Lho Byeong Cheol;Kim Jeong Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.505-508
    • /
    • 2005
  • Concrete has a void, which exists as one of defect in concrete. If the porosity of concrete increases, durability of concrete decreases. In this paper, to improve surface void of concrete, surface penetration sealers are applied to specimen. And it were investigated that the resistances of chloride penetration and freezing and thawing for concrete with surface penetration sealer of two types. According to the results, surface penetration sealer has not show a harmful influence on strength and resistance of freezing and thawing. Also, B type surface penetration sealer was more superior in resistance of chloride penetration.

  • PDF

Evaluation on Resistance of Chloride Attack and Freezing and Thawing of Connote with Surface Penetration Sealer (표면 침투제에 따른 콘크리트의 염화물 침투와 동결융해 저항성에대한 평가)

  • Yang, Eun-Ik;Kim, Myung-Yu;Lho, Byeong-Cheol;Kim, Jeong-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.65-71
    • /
    • 2006
  • Concrete has a void, which exists as one of defect in concrete. If the porosity of concrete increases, durability of concrete decreases. In this paper, to improve surface void of concrete, surface penetration sealers are applied to specimen. And, it were investigated that the resistances of chloride penetration and freezing and thawing for concrete with surface penetration sealer of two types. According to the results, surface penetration sealer has not show a harmful influence on strength and resistance of freezing and thawing. Surface penetration sealers were effective in the resistance of chloride penetration.

Development of a Sealer for the Durable-Performance Improvement of the Nuclear Concrete (원전콘크리트 내구성능개선을 위한 표면침투제 개발)

  • Park, Sang-Soon;Lee, Sang-Keun;Lee, Sang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.821-824
    • /
    • 2004
  • For nuclear concrete structures on the coast, the prevention and management against salt damage is needed because they are being under the influence of the sea water at all times. In general, the deterioration of the concrete is generated in concrete surface firstly and then extended into concrete gradually as its service life increases. Therefore, the protective layer on the concrete surface is needed to establish and manage the durability of concrete. To enhance the durability performance of the existing and new concrete, the development and application of a high-performance penetration sealer is needed. The sealer has to have the functions that are able to prevent the attack of the moisture, carbon dioxide, and harmful substance from the outside. Therefore, the aim of this study is to development of a sealer for the long service-life and waterproof performance of a nuclear concrete structures.

  • PDF

A Foundational Study on Effect of Siliceous Sealer for Reinforcement of Concrete Surface Layer (규산질계 액상형 바탕강화재의 콘크리트 표층부 보강특성에 관한 기초적 연구)

  • 최성민;곽규성;윤우옥;김상갑;오상근;안상덕
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.671-676
    • /
    • 1998
  • This study deals with the effect on penetration properties of siliceous ion througth the mortar applicated by the waterproofing coating materials of siliceous seler liquid type. The tests of properties for reinforcing effect in mortar substrate surface layer are five kinds of water permeability, absorption, compressive strength, surface layer strength, pH content and chemical attack effect. Water permeability of mortar coated siliceous sealer in very than that of plane mortar. compressive strength of mortar coated siliceous sealer in larger than that of plane mortar about 10%.

  • PDF

A STUDY ON THE EFFECT OF DENTIN BONDING AGENTS APPLIED OVER ENAMEL ABOUT THE BOND STRENGTH OF COMPOSITE RESIN (접착강화제가 치아경조직과의 접착강도 변화에 미치는 영향에 관한 연구)

  • Choi, Woong-Dae;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.1-16
    • /
    • 1995
  • The purpose of this study was to investigate the effect of dentin bonding agents on the bond strength of composite resin restorations in case of applying the dentin bonding agents to acid etched enamel surfaces. Freshly extracted 364 bovine anterior teeth were selected as a adherents. 320 enamel specimens were divided into two groups(unetched group (1) and etched group (2) for testing the shear bond strength, 40 specimens were used for the hardness testing, and 4 specimens of rest were to observe the resin-tag formation into etched enamel surfaces. All surfaces of enamel specimens were polished with 320~1500 SiC paper under continuous running water. In Group (1), 100 enamel specimens were polished and unetched. 220 polished enamel specimens in Group (2) were etched with 37 % phosphoric acid solution for 60 seconds, washed with water for 20 seconds, and dried with a light air pressure for 60 seconds. Three kinds of dentin bonding agents(Gluma, Prisma, Scotchbond 2) were evaluated the effect on the bond strength to conditioned enamel surfaces. Shear bond strengths were measured on the three cases such as a coating of primer only, a coating of sealer only, and a sequential coating of primer and sealer to acid etched enamel surfaces were compared with the bond strengths measured by the coating of enamel bonding agent followed by the bonding of composite resin (Photo clearfil bright, Kuraray, Japan) to unetched and acid etched enamel surfaces. In addition, the hardness tested on the adhesive fractured surface between composite resin enamel as a mean of evaluation of a factor whether the mechanical bond strengths were affected and the penetration of dentin bonding agents into etched enamel surfaces was also observed. Bond strengths were measured using the method of shear bond strength by a universal testing machine (Instron-4467, USA), statistical test were applied to the results using a one way analysis variance(ANOVA), and hardness was measured by the Vicker's Hardness Tester(MHT-i, Matsuzawa, Japan) and the penetration of the resins were observed by the SEM (Hitachi, S-2300, Japan). The following conclusions were drawn; 1. Enamel bonding agent showed to affect the improvement of bond strength of composite resin to enamel surface both unetched and etched. 2. Dentin bonding agents could be resulted in increase of bond strength to unetched enamel surface, but there were no statistical significances. 3. Bond strengths to etched enamel surface were significantly decreased with a coating of dentin primer only. 4. Coating of sealer only and coating of primer and sealer noticed the similar bond strengths of composite resin to etched enamel using the enamel bonding agents. 5. The applying method proved to be more effective than the kinds of dentin bonding agents on the bond strength of composite resin to etched enamel than the kind of dentin. 6. Vicker's hardness numbers of dentin bonding agents were lower than that of composite resin, but the degree of penetration of dentin bonding agents into etched enamel surfaces was excellent.

  • PDF

The research for the durable-performance improvement of nuclear concrete structures by increasing the density of concrete surface layer (콘크리트 표면밀도 증가에 의한 원전구조 성능개선 연구)

  • Choi, Hong-Shik;Lee, Si-Woo;Heo, Gweon;Lee, Sang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.253-256
    • /
    • 2006
  • For nuclear concrete structures on the coast, the prevention and management against salt damage is needed because they are being under the influence of the sea water at all times. In general, the deterioration of the concrete is generated in concrete surface firstly and then extended into concrete gradually as its service life increases. Therefore, the protective layer on the concrete surface is needed to establish and manage the durability of concrete. To enhance the durability performance of the existing and new concrete, the development and application of a high-performance penetration sealer is needed. The sealer has to have the functions that are able to prevent the attack of the moisture, carbon dioxide, and harmful substance from the outside. Therefore, the aim of this project is to guarantee the long service-life and waterproof performance of a nuclear concrete structures by increasing the density of the existing and new concrete surface layer, and to enhance the dust-proof performance of the uncoating part of the nuclear safety-relative structures.

  • PDF

PROPERTIES OF CALCIUM HYDROXIDE-EUGENOL COMPOUND (수산화칼슘-유지놀 화합물의 물성)

  • Park, Joon-Chol;Kwon, Tae-Kyung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.408-415
    • /
    • 1999
  • When a zinc-oxide eugenol type sealer was placed in root canals treated previously with calcium hydroxide, acceleration of its setting and the yellowish discoloration were observed clinically. The purpose of this study was to evaluate the properties of calcium hydroxide-eugenol compound. Some physical properties of calcium hydroxide-eugenol compound were compared with a manufactured zinc-oxide eugenol based root canal sealer, Tubli-seal$^{(R)}$ in terms of water solubility, water sorption, film thickness and microleakage. Solubility and water sorption were determined by the use of the method described in American Dental Association Specification(ADAS) no. 57. Ten samples of each material were prepared into disks 20mm in diameter and 1.5mm in thickness. The samples were immersed in 50ml of distilled water at $37{\pm}1^{\circ}C$ for 7 days. The samples were then removed and placed in a desiccator. The values for solubility and water sorption were calculated using differences between the weights of same sample. Film thickness was determined by the use of the method described in ADAS no. 57 too. A small quantity of mixed cement was placed between two glass plates of which thickness was measured previously. 15Kg loading was applied and total thickness of the glass plates and the cement film was measured. The thickness difference was recorded as the material's film thickness. Microleakage was determined with a dye penetration method. Experimental materials were placed between the dentin surface of bovine tooth and the acrylic rod. These units were immersed in Pelican ink (W-Germany) for three days. Dye-penetrated dentin surfaces of bovine tooth were measured using the NIB Image 1.60 Macintosh program. The results are as follows: 1. Water solubility value of calcium hydroxide-eugenol compound (20.98${\pm}$2.94%) was statistically higher than those of Tubli-seal$^{(R)}$(2.52${\pm}$0.49%)(p<0.05). 2. Water sorption value of calcium hydroxide-eugenol compound (59.72${\pm}$17.75%) was statistically higher than those of Tubli-seal$^{(R)}$(3.15${\pm}$0.76%)(p<0.05). 3. Film thickness value of calcium hydroxide-eugenol compound (0.36${\pm}$0.03mm) was statistically higher than those of Tubli-seal$^{(R)}$(0.12${\pm}$0.1mm)(p<0.05). 4. Dye penetration value after 3 days-immersion of calcium hydroxide-eugenol compound(57.63${\pm}$25.85%) was statistically higher than those of Tubli-seal$^{(R)}$(28.05${\pm}$23.46%)(p<0.05).

  • PDF

A Study on the Development of an Automated Pavement Crack Sealer (도로면 크랙 실링 자동화 장비 개발에 관한 연구)

  • Lee Jeong-Ho;Lee Jae-Kwon;Kim Min-Jae;Kim Young-Suk;Cho Moon-Young;Lee Jun-bok
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.539-542
    • /
    • 2002
  • Crack sealing is a maintenance procedure that is commonly used to reduce pavement degradation. If cracks in pavements are not sealed, surface water penetration can reduce the strength of the sub-base layers, which can result in increased deflections of the pavement. Reduced strength of the sub-base also accelerates the deterioration of the surface, due to development of greater cracking and potholes. Crack sealing is performed to reduce water and debris penetration, thereby helping to maintain pavement structural capacity and limiting future degradation. The process of sealing cracks in pavements is however dangerous, costly, and labor-intensive operation. Labor turnover and training are increasing problems related to crack sealing crews, and as traffic volumes increase. Automating crack sealing can reduce labor and road user costs, improve work quality, and decrease worker exposure to roadway hazards. The main objective of this research is to develop an automated system for sealing cracks in pavement. Extension of the algorithms and tools presented in this research is also recommended for future study.

  • PDF

A Study on the Development of an Automated Pavement Crack Sealer (도로면 크랙실링 자동화 로봇의 프로토타입 개발에 관한 연구)

  • Lee Jeong-Ho;Yu Hyun-Seok;Kim Young-Suk;Lee Jun-Bok;Cho Moon-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.2 s.18
    • /
    • pp.162-171
    • /
    • 2004
  • Crack sealing is a maintenance procedure that is commonly used to reduce pavement degradation. If cracks in pavements are not sealed, surface water penetration can reduce the strength of the sub-base layers, which can result in increased deflections of the pavement. Reduced strength of the sub-base also accelerates the deterioration of the surface, due to development of greater cracking and potholes. Crack sealing is performed to reduce water and debris penetration, thereby helping to maintain pavement structural capacity and limiting future degradation. The process of sealing cracks in pavements is however dangerous, costly, and labor-intensive operation. Labor turnover and training are increasing problems related to crack sealing crews, and as traffic volumes increase. Automating crack sealing can reduce labor and road user costs, improve work quality, and decrease worker exposure to roadway hazards. The main objective of this research is to develop an automated system for sealing cracks in pavement. Extension of the algorithms and tools presented in this research is also recommended for future study.