• 제목/요약/키워드: surface of concrete

검색결과 2,412건 처리시간 0.026초

콘크리트 보수용 폴리머 복합재료의 접착강도 특성 (Adhesion Properties of Polymer Composite Materials for Concrete Repair)

  • 지경용;연규석;이윤수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.330-335
    • /
    • 1998
  • This research was conducted to evaluate the adhesion in tension of the polymer mortars for cement concrete repair. Various polymer types, binder ratios, and wet/dry conditions of the surface were considered in this study. Styrene-butadiene rubber (SBR) and ethylen vinyl acetate (EVA) used for polymer cement mortars. Epoxy resin (EP), and unsaturated polyester resin (UP) were used for polymer mertars. Adhesion in tension for the dry condition of the substrate surface was higher than that for the wet condition of the substrate surface under the same binder ratio. Therefore, in repairing concrete, the dry surface condition was effective on adhesion.

  • PDF

A Study on the Evaluation of Surface Dose Rate of New Disposal Containers Though the Activation Evaluation of Bio-Shield Concrete Waste From Kori Unit 1

  • Kang, Gi-Woong;Kim, Rin-Ah;Do, Ho-Seok;Kim, Tae-Man;Cho, Chun-Hyung
    • 방사성폐기물학회지
    • /
    • 제19권1호
    • /
    • pp.133-140
    • /
    • 2021
  • This study evaluates the radioactivity of concrete waste that occurs due to large amounts of decommissioned nuclear wastes and then determines the surface dose rate when the waste is packaged in a disposal container. The radiation assessment was conducted under the presumption that impurities included in the bio-shielded concrete contain the highest amount of radioactivity among all the concrete wastes. Neutron flux was applied using the simplified model approach in a sample containing the most Co and Eu impurities, and a maximum of 9.8×104 Bq·g-1 60Co and 2.63×105 Bq·g-1 152Eu was determined. Subsequently, the surface dose rate of the container was measured assuming that the bio-shield concrete waste would be packaged in a newly developed disposal container. Results showed that most of the concrete wastes with a depth of 20 cm or higher from the concrete surface was found to have less than 1.8 mSv·hr-1 in the surface dose of the new-type disposal container. Hence, when bio-shielded concrete wastes, having the highest radioactivity, is disposed in the new disposal container, it satisfies the limit of the surface dose rate (i.e., 2 mSv·hr-1) as per global standards.

함침계 표면보호제에 의한 콘크리트 표면의 세공구조 변화 및 내구성 향상 (Improvement of Durability and Change of Pore Structure for Concrete Surface by the Penetrative Surface Protection Agent)

  • 강석표;김정환
    • 콘크리트학회논문집
    • /
    • 제18권1호
    • /
    • pp.125-132
    • /
    • 2006
  • 최근 들어 툭별한 물리적 방법을 사용하지 않고 내구성능이 저하된 콘크리트의 성능을 회복시키는 방법의 일환으로서 콘크리트 표면보호재에 대한 관심이 높아지고 있다. 표면보호는 직접적인 의미로서는 콘크리트 구조물의 표면을 보호하는 것뿐만아니라 다양한 열화요인의 침투를 억제함으로서 내부의 콘크리트 및 철근의 열화를 억제하여 콘크리트 구조물을 보호하게 된다. 이와 같은 표면보호재 중 함침계 표면보호재는 콘크리트 표면층의 공극에 충전 혹은 생성물을 석출시켜 치밀한 층으로 하느 충전계와 콘크리트 표면층의 외부 및 내부표면의 성질을 개선하는 표면계로 분류하는 것이 가능하다. 따라서 본 연구는 규플르오르화염을 주성분으로 하는 표면형 함침계 표면보호제 도포에 의한 콘크리트 표면의 세공구조의 변화 및 중성화, 염해, 화학적 침식 등의 내구성 향상을 실험실증적으로 검토함으로서 콘크리트 구조물의 내구성향상 방안을 제시하고자 한다. 그 결과, 표면보호제를 도포함으로서 모든 물시멘트비에서 도포전과 비교하여 전세공용적이 감소하고 있으며, 특히 50nm이상의 비교적 큰 세공경인 모세관공극의 용적이 감소함으로서 물흡수성, 중성화 저항성, 내황산성, 염소이온침투 저항성 등의 내구성 향상에 기여하는 것으로 나타났으며, 그 효과는 물시멘트비가 클수록 높게 나타났다.

콘크리트의 표면성능개선이 염소이온투과저항성에 미치는 영향에 관한 실험적 연구 (An experimental study on surface performance improvement of concrete influencing on resistance to chloride)

  • 김재성;강석표;홍성윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.782-785
    • /
    • 2004
  • Salt attack is one of the serious deterioration factor with respect to the durability of concrete structure. Especially, in case of exposed rebar concrete structure in marine environment, corrosion of rebar is accelerated by penetration of $Cl^-$ from exterior. Through this path, volume of corroded rebar is increased about two and half times due to increased inner pressure originated from rust. As a consequence, the overall deterioration of concrete structure, namely, cracks, reduction of adhesive strength and pop-out is followed. In this paper, the effect of structure treatment of concrete on chloride resistance has been investigated. At the same time, the relationship among several characteristics, such as resistance to chloride, water absorption coefficient and surface hardness of concrete has been investigated. It is believed that surface performance improvement by the application of penetrative hardening agent influences on positively water absorption coefficient, surface hardness of concrete and resistance to chloride ion penetration.

  • PDF

고성능 표면침투제가 도포된 콘크리트의 복합열화저항성 평가 (The Evaluation of Resistance of Multi-degregation on Concrete Coated High Performance Penetration Agency)

  • 유성원;서정인;하헌재;이상민;박상순
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.241-244
    • /
    • 2004
  • The evaluation of Single or multi-degregation of concrete coated by high performance surface penetration agency was examined through various tests, i.e., carbonation, absorption, carbonation + chloride ion and carbonation + chemical solution according to various high performance surface penetration agencies and various compressive strengths of base concrete. The 2 types of high performance surface penetration agencies were used i.e., inorganic and alcohol soluble. And 2 types of compressive strength of base concrete were used such as 21 30. MPa. The characteristics of concrete coated high performance surface penetration agency was more improved than that of non-coated concrete, and especially, water soluble inorganic agency was most effective. And if compressive strength of base concrete was low, the improved effects would be larger.

  • PDF

Service life evaluation of HPC with increasing surface chlorides from field data in different sea conditions

  • Jong-Suk Lee;Keun-Hyeok Yang;Yong-Sik Yoon;Jin-Won Nam;Seug-Jun Kwon
    • Advances in concrete construction
    • /
    • 제16권3호
    • /
    • pp.155-167
    • /
    • 2023
  • The penetrated chloride in concrete has different behavior with mix proportions and local exposure conditions, even in the same environments, so that it is very important to quantify surface chloride contents for durability design. As well known, the surface chloride content which is a key parameter like external loading in structural safety design increases with exposure period. In this study, concrete samples containing OPC (Ordinary Portland Cement), GGBFS (Ground Granulated Blast Furnace Slag), and FA (Fly Ash) had been exposed to submerged, tidal, and splash area for 5 years, then the surface chloride contents changing with exposure period were evaluated. The surface chloride contents were obtained from the chloride profile based on the Fick's 2nd Law, and the regression analysis for them was performed with exponential and square root function. After exposure period of 5 years in submerged and tidal area conditions, the surface chloride content of OPC concrete increased to 6.4 kg/m3 - 7.3 kg/m3, and the surface chloride content of GGBFS concrete was evaluated as 7.3 kg/m3 - 11.5 kg/m3. In the higher replacement ratio of GGBFS, the higher surface chloride contents were evaluated. The surface chloride content in FA concrete showed a range of 6.7 kg/m3 to 9.9 kg/m3, which was the intermediate level of OPC and GGBFS concrete. In the case of splash area, the surface chloride contents in all specimens were from 0.59 kg/m3 to 0.75 kg/m3, which was the lowest of all exposure conditions. Experimental constants available for durability design of chloride ingress were derived through regression analysis over exposure period. In the concrete with GGBFS replacement ratio of 50%, the increase rate of surface chloride contents decreased rapidly as the water to binder ratio increased.

라텍스개질 콘크리트 종류에 따른 표면 박리 저항 특성 (Surface Scaling Resistance of Latex-Modified Concretes)

  • 이훈재;김성환;홍창우;윤경구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.757-762
    • /
    • 2002
  • This study focused on the investigation of durability of latex modified concrete in the points of surface scaling resistance as cement types variated and latex content variated such as 5%, 10%, 15%, and 20%. An increasing the amount of latex produced concrete with increased flexural strength, but with slightly lower compressive strength. The increase in flexural strength might be attributed to the latex films between the hydrated cement and aggregates, and the decrease in compressive strength to the flexibility of the latex component named by Butadiene. The surface scaling resistance test was used to evaluate the durability of latex-modified concretes and rapid setting latex-modified concretes. The surface scaling resistance of LMC was quite good comparing to conventional concrete. Further, surface scaling resistance of RSLMC was improved with increasing the latex content.

  • PDF

Experimental study of sodium fire and its characteristics under the coupling action of columnar liquid sodium flow and concrete

  • Huo, Yan;Zou, Gao-Wan;Dong, Hui;Lv, Jian-Fu;He, Jian
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.2866-2877
    • /
    • 2021
  • The complex coupling relationship between liquid sodium and concrete materials affects both the sodium fire characteristics and concrete properties through heat and chemical erosion. In this study, experiments on direct and indirect (separated by a steel plate) contact of the columnar sodium fire with the concrete surface were performed. It was found that the combustion efficiency of liquid sodium in direct contact with concrete was significantly enhanced and accompanied by intermittent explosions and splashing of small concrete fragments. The sodium fire on the surface of the concrete considerably increased the internal temperature, pore size, and distribution density of the concrete. In addition, the depth of influence on the loosening of the concrete structure was also greatly extended. The contact of liquid sodium with the concrete substantially affected its permeability resistance. The water absorption of the concrete surface was increased by more than 70% when liquid sodium directly impacted the bare concrete surface. However, the change in water absorption in the centre of the concrete was primarily affected by the duration of the external heat.

대기온도의 변화에 의한 콘크리트 중력댐 하류면의 균열거동에 관한 연구 (On the crack behaviour of the downstream surface of the concrete gravity dam by atmosphere temperature change)

  • 김조수;장희석;정태환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.643-646
    • /
    • 1999
  • Downstream surface of the concrete gravity dam receives thermal stress due to atmosphere temperature change. So in this paper, the behaviors of crack located in the downstream surface were investigated, when considering the temperature change.

  • PDF

Evaluating the bond strength between concrete substrate and repair mortars with full-factorial analysis

  • Felekoglu, Kamile Tosun;Felekoglu, Burcu;Tasan, A. Serdar;Felekoglu, Burak
    • Computers and Concrete
    • /
    • 제12권5호
    • /
    • pp.651-668
    • /
    • 2013
  • Concrete structures need repairing due to various reasons such as deteriorative effects, overloading, poor quality of workmanship and design failures. Cement based repair mortars are the most widely used solutions for concrete repair applications. Various factors may affect the bond strength between concrete substrate and repair mortars. In this paper, the effects of polymer additives, strength of the concrete substrate, surface roughness, surface wetness and aging on the bond between concrete substrate and repair mortar has been investigated. Full factorial experimental design is employed to investigate the main and interaction effects of these factors on the bond strength. Analysis of variance (ANOVA) under design of experiments (DOE) in Minitab 14 Statistical Software is used for the analysis. Results showed that the interaction bond strength is higher when the application surface is wet and strength of the concrete substrate is comparatively high. According to the results obtained from the analysis, the most effective repair mortar additive in terms of bonding efficiency was styrene butadiene rubber (SBR) within the investigated polymers and test conditions. This bonding ability improvement can be attributed to the self-flowing ability, high flexural strength and comparatively low air content of SBR modified repair mortars. On the other hand, styrene acrylate rubber (SAR) modified mortars was found incompatible with the concrete substrate.