• 제목/요약/키워드: surface of concrete

검색결과 2,419건 처리시간 0.035초

타설 직후 건조하는 콘크리트의 표면습도 모형 (A Surface Humidity Model of Drying Concrete Immediately after Placement)

  • 정진훈
    • 한국도로학회논문집
    • /
    • 제7권3호
    • /
    • pp.23-30
    • /
    • 2005
  • 콘크리트 내부의 습도분포와 변화를 예측하는 것은 현장에서 콘크리트의 양생품질을 향상시키기 위하여 필수적이다 콘크리트의 습도는 주로 표면습도를 경계조건을 사용하는 수치해석을 통하여 예측된다. 하지만, 표면습도를 정확히 측정하기 어려우므로 거의 모든 수치해석에 표면습도 대신 대기습도를 사용하여 왔다. 본 논문에서는 표면습도를 정확하게 측정할 수 있는 방법을 제시하고 일련의 실내실험을 통하여 측정된 대기습도와 콘크리트의 내부 및 표면습도를 보여준다. 이와는 별개의 실험을 통하여 타설 직후의 콘크리트가 낮은 습도를 나타내는 원인을 조사하였다. 측정된 습도를 이용하여 콘크리트의 표면습도를 예측할 수 있는 모형을 개발하였으며 추가적인 실험을 통하여 모형의 유효성을 검증하였다.

  • PDF

금속용사 시스템을 이용한 콘크리트 구조물의 마감공법 개발 (Development for Finishing Method of Concrete Structures Applying Metal Spraying System)

  • 이한승
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.1225-1228
    • /
    • 2001
  • The purpose of this study is to develop for finishing method of concrete structures applying metal spraying system. In the experiments, the pull out tests were conducted using the specimen which was applied by various surface treatment of concrete substrate. As a result, it was confirmed that the adhesion strength of metal spray was effected by surface condition of concrete and the construction of primer or the coarse surface agent to the concrete substrate is very effective to the new finishing method of concrete for the metal spraying system.

  • PDF

Experimental study on improving bamboo concrete bond strength

  • Mali, Pankaj R.;Datta, Debarati
    • Advances in concrete construction
    • /
    • 제7권3호
    • /
    • pp.191-201
    • /
    • 2019
  • Bamboo concrete bond behaviour is investigated through pullout test in this work. The bamboo strip to be used as reinforcement inside concrete is first treated with chemical adhesive to make the bamboo surface impermeable. Various surface coatings are explored to understand their water repellant properties. The chemical action at the bamboo concrete interface is studied through different chemical coatings, sand blasting, and steel wire wrapping treatment. Whereas mechanical action at the bamboo concrete interface is studied by developing mechanical interlock. The result of pullout tests revealed a unique combination of surface treatment and grooved bamboo profile. This combination of surface treatment and a grooved bamboo profile together enhances the strength of bond. Performance of a newly developed grooved bamboo strip is verified against equivalent plain rectangular bamboo strip. The test results show that the proposed grooved bamboo reinforcement, when treated, shows highest bond strength compared to treated plain, untreated plain and untreated grooved bamboo reinforcement. Also, it is observed that bond strength is majorly influenced by the type of surface treatment, size and spacing of groove. The changes in bamboo-concrete bond behavior are observed during the experimentation.

Interface slip of post-tensioned concrete beams with stage construction: Experimental and FE study

  • Low, Hin Foo;Kong, Sih Ying;Kong, Daniel;Paul, Suvash Chandra
    • Computers and Concrete
    • /
    • 제24권2호
    • /
    • pp.173-183
    • /
    • 2019
  • This study presents experimental and numerical results of prestressed concrete composite beams with different casting and stressing sequence. The beams were tested under three-point bending and it was found that prestressed concrete composite beams could not achieve monolith behavior due to interface slippage between two layers. The initial stress distribution due to different construction sequence has little effect on the maximum load of composite beams. The multi-step FE analyses could simulate different casting and stressing sequence thus correctly capturing the initial stress distribution induced by staged construction. Three contact algorithms were considered for interaction between concrete layers in the FE models namely tie constraint, cohesive contact and surface-to-surface contact. It was found that both cohesive contact and surface-to-surface contact could simulate the interface slip even though each algorithm considers different shear transfer mechanism. The use of surface-to-surface contact for beams with more than 2 layers of concrete is not recommended as it underestimates the maximum load in this study.

Shape determination of 3-D reinforcement corrosion in concrete based on observed temperature on concrete surface

  • Kurahashi, Takahiko;Oshita, Hideki
    • Computers and Concrete
    • /
    • 제7권1호
    • /
    • pp.63-81
    • /
    • 2010
  • We present the shape determination method of 3-D reinforcement corrosion based on observed temperature on concrete surface. The non-destructive testing for reinforcement corrosion in concrete using a heat image on concrete surface have been proposed by Oshita. The position of the reinforcement of corrosion or the cavity can be found using that method. However, the size of those defects can not be precisely measured based on the heat image. We therefore proposed the numerical determination system of the shape for the reinforcement corrosion using the observed temperature on the concrete surface. The adjoint variable method is introduced to formulate the shape determination problem, and the finite element method is employed to simulate the heat transfer problem. Some numerical experiments and the examination for the number of the observation points are shown in this paper.

Evaluation on Surface Scaling and Frost Resistance for concrete Deteriorated due to Cyclic Freezing and Thawing with Inherent Chloride

  • Kim, Gyu Yong;Cho, Bong Suk;Lee, Seung Hoon;Kim, Moo Han
    • Corrosion Science and Technology
    • /
    • 제6권4호
    • /
    • pp.177-185
    • /
    • 2007
  • The purpose of this study is to evaluate freezing-thawing and surface scaling resistance in order to examine the frost durability of concrete in a chloride-inherent environment. The mixing design for this study is as follows: 3 water binder ratios of 0.37, 0.42, and 0.47; 2-ingredient type concrete (50% OPC concrete and 50% ground granulated blast-furnace slag), and 3-ingredient type concrete (50% OPC concrete, 15% fly ash, and 35% ground granulated blast-furnace slag). As found in this study, the decrease of durability was much more noticeable in combined deterioration through both salt damage and frost damage than in a single deterioration through either ofthese; when using blast-furnace slag in freezing-thawing seawater, the frost durability and surface deterioration resistance was evaluated as higher than when using OPC concrete. BF 50% concrete, especially, rather than BFS35%+FA15%, had a notable effect on resistance to chloride penetration and freezing/expansion. It has been confirmed that surface deterioration can be evaluated through a quantitative analysis of scaling, calculated from concrete's underwater weight and surface-dry weight as affected by the freezing-thawing of seawater.

거푸집 종류에 따른 콘크리트 표면 특성 (Surface Characteristics of Concrete According to Types of Formworks)

  • 박세언;최정일;이봉기;이방연
    • 한국건설순환자원학회논문집
    • /
    • 제9권4호
    • /
    • pp.499-505
    • /
    • 2021
  • 이 연구의 목적은 거푸집 종류별로 콘크리트 표면의 물리/화학적 특성을 실험적으로 조사하는 것이다. 이를 위하여 건설공사에 일반적으로 사용되는 합판 거푸집과 코팅된 합판 거푸집을 준비하였고, 추가로 콘크리트 표면 열화나 거친 표면을 모사하기 위해 사포를 부착한 합판 거푸집을 준비하였다. 콘크리트는 일반 콘크리트를 사용하였다. 콘크리트 표면 특성은 육안관찰, 주사전자현미경 관찰, 성분 이미지 맵핑, 화학성분 분석, 2차원과 3차원 표면 형상 분석, 그리고 제타 전위 측정을 통해 조사하였다. 실험결과 코팅된 거푸집과 접한 콘크리트 표면이 가장 매끄럽고, 사포를 부착한 거푸집과 접한 콘크리트 표면이 가장 거친 것으로 나타났다. 이외에도 거푸집 종류별로 표면 특성에 뚜렷한 차이가 나타났다. 다만 표면 거칠기가 화학 성분이나 제타 전위에 비하여 차이가 크게 나타났다.

표면 침투제에 따른 콘크리트의 염화물 침투와 동결융해 저항성에대한 평가 (Evaluation on Resistance of Chloride Attack and Freezing and Thawing of Connote with Surface Penetration Sealer)

  • 양은익;김명유;노병철;김정훈
    • 콘크리트학회논문집
    • /
    • 제18권1호
    • /
    • pp.65-71
    • /
    • 2006
  • 콘크리트는 내부에 결함 중 하나로써 존재하는 공극을 가진 재료이다. 만약 콘크리트의 공극률이 증가하면 콘크리트의 내구성은 감소하게 된다. 본 연구에서는 콘크리트의 표면 공극을 개선하기 위하여 표면 침투제를 시험체에 적용하였다. 그리고, 두 가지 유형의 표면 침투제를 이용하여 콘크리트에 도포함으로써 염화물 침투에 대한 저항성과 동결융해 저항성을 평가하였다. 결과에 따르면, 표면 침투제는 강도와 동결융해 저항성에 악영향을 미치지 않은 것으로 보인다. 염화물 침투 저항성에 있어 표면 침투제가 효과적임을 알 수 있었다.

도포형 표면강화제 적용 콘크리트의 성능 검증법에 관한 연구 (A Study on Verification Method for the Performance of Surface-Treatment Agent Applied on Concrete)

  • 고경택;김성욱
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.1025-1030
    • /
    • 2000
  • Recently, surface-treatment agent was developed to restore performance of the deteriorated concrete and inhibiting corrosion of the reinforcing-bar. The performance of surface-treatment agent was verified and this agent has been broadly in America and European countries. However, this type agent has not been used broadly in Korea because performance of the agent isn't verify by a proper test method yet. In this study, we suggested our own test procedures and methods through extensive laboratory tests to verify the performance of concrete after applying the surface-treatment agent.

Theoretical Approach to Calculate Surface Chloride Content $C_s$ of Submerged Concrete under Sea Water Laden Environment

  • 윤인석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.197-200
    • /
    • 2006
  • The ingress of chloride ions plays a crucial role for service life design of reinforced concrete structures. In view of durability design of concrete structures under marine environment, one of the most essential parameters is the surface chloride content of concrete. However, on the basis of the results of in-situ investigation, this value has been determining in the numerous studies on the durability design of concrete structures. Hence, it is necessary to confirm the range of the surface chloride content in order to establish a unified durability design system of concrete. This study suggests a rational and practical way to calculate the maximum surface chloride content of submerged concrete under marine environment. This approach starts with the calculation of the amount of chloride ingredients in normal sea water. The capillary pore structure is modeled by numerical simulation model HYMOSTRUC and it is assumed to be completely saturated by the salt ingredients of sea water. In order to validate this approach, the total chloride content of the mortar and concrete slim disc specimen was measured after the immersion into the artificial sea water solution. Additionally, the theoretical, the experimental and in-situ investigation results of other researchers are compiled and analyzed. Based on this approach, it will follow to calculate the maximum surface chloride content of concrete at tidal zone, where the environment can be considered as a condition of dry-wetting cycles.

  • PDF