• Title/Summary/Keyword: surface motor

Search Result 876, Processing Time 0.032 seconds

Numerical Analysis for Thermal Response of Silica Phenolic in Solid Rocket Motor (고체 로켓 추진기관에서 실리카/페놀릭 열반응 해석 연구)

  • Seo, Sangkyu;Hahm, Heecheol;Kang, Yoongoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.521-528
    • /
    • 2017
  • In this paper, the numerical analysis for heat conduction of silica/phenolic composite material, which is used for solid rocket nozzle liner or insulator, was conducted. 1-D Finite Difference Method for the analysis of silica/phenolic during the firing of solid rocket motor was used to calculate the heat conduction considering the surface ablation and the thermal decomposition. The boundary condition at the nozzle wall took into account the convective heat transfer, which was obtained by integration equation. The numerical results of the surface ablation and char depth were compared with the results of test motor that is TPEM-10. It was found that the result of calculation is favorably agreed with the thermal response of test motor.

  • PDF

Numerical Analysis for Thermal Response of Silica Phenolic in Solid Rocket Motor (고체 로켓 추진기관에서 실리카/페놀릭 열반응 해석 연구)

  • Seo, Sangkyu;Hahm, Heecheol;Kang, Yoongoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.76-84
    • /
    • 2018
  • In this paper, the numerical analysis for heat conduction of silica/phenolic composite material, used for solid rocket nozzle liners or insulators, is conducted. A 1-dimensional finite difference method for the analysis of silica/phenolic during the firing of a solid rocket motor is used to calculate heat conduction, considering surface ablation and thermal decomposition. The boundary condition at the nozzle wall, considering the convective heat transfer, is obtained via integration equations. The numerical results of the surface ablation and char depth are compared with the results of a TPEM-10 test motor, finding that the result of calculation agrees with the thermal response of the test motor.

Morphological Analysis of Oil-Lubricated Surface for Hydraulic Piston Motor (유압 피스톤 모터의 윤활 마찰면 상태 해석)

  • 배효준;강인혁;박정록;박흥식;전태옥
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.290-295
    • /
    • 2001
  • The surface morphology of oil-lubricated surface for hydraulic piston motor is believed to be extremely effective in contact mechanics. adhesion, friction and wear. In order to describe morphology of various rubbed surface on driving condition, the wear test was carried out under different experimental conditions in oil-lubricated system. And fractal descriptors was applied to rubbed surface of hydraulic driving material with image processing system. These descriptors to analyze surface structure are fractal dimension. Surface fractal dimension can be determined by sum of intensity difference of surface pixel. Morphology of rubbed surface can be effectively obtained by fractal dimensions.

  • PDF

Self-Commissioning for Surface-Mounted Permanent Magnet Synchronous Motors

  • Urasaki, Naomitsu;Senjyu, Tomonobu;Uezato, Katsumi
    • Journal of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.33-39
    • /
    • 2003
  • This paper presents the self-commissioning for surface-mounted permanent magnet synchronous motor. The proposed strategy executes three tests with a vector controlled inverter drive system. To do this, synchronous d-q axes currents are appropriately controlled for each test. From the three tests, armature resistance, armature inductance, equivalent iron loss resistance, and emf coefficient are identified automatically. The validity of the proposed strategy is confirmed by experimental results.

Knee Rehabilitation System through EMG Signal analysis and BLDC Motor Control (근전도 신호 분석 및 BLDC모터 제어를 통한 무릎재활시스템)

  • Kwon, Hyeong-Gi;Ko, Hyeong-Gyu;Song, Yoon-Oh;Son, Eui-Seong;Lee, Boong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.1009-1018
    • /
    • 2019
  • This paper describes the design and implementation of a rehabilitation medical device based on a EMG measurement. Rehabilitation systems are controlled using BLDC motors and motor drives. The BLDC motor drive controls the operation and the speed controls the drive through the external servo motor. In addition, potentiometer coupled to the outside of the motor transmits information about the position of the load being rotated by the motor. The rehabilitation algorithm is controlled by limiting the maximum angle of 0 to 120 by utilizing the motor according to the user setting stage during the rehabilitation exercise. The walking algorithm compensates motor control for the low leg of the signal using the difference value of the signal obtained with the surface denser attached to both inner muscles. The motor and surface denser are utilized for the walk motion to control the maximum angle of 0 to 80.

A study on driving characteristics of thin ultrasonic motor (박형 초음파 모터의 특성 연구)

  • Jeong, Seong-Su;Park, Tae-Gone
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1285-1286
    • /
    • 2007
  • In this study, novel structured thin ultrasonic rotary motor has been proposed. Ultrasonic motors are based on an elliptical motion on the surface of elastic body. ATILA ver. 5.2.4 was used for optimizing stator. The motor was fabricated by using designed stator. And characteristics of the motor were compared with simulated results. When the motor was fabricated with these results, 860[rpm] speed was obtain by input voltage of 16[Vrms] at 92.5[kHz].

  • PDF

New Motor Parameter Estimation Method of Surface-mounted Permanent Magnet Motors (표면 부착형 영구자석 전동기의 새로운 상수 추정 방법)

  • Lee, Dong-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.517-522
    • /
    • 2019
  • This paper proposes a new motor parameter estimation method. Because the proposed method is based on difference equations, it does not affect the error in the voltage magnitude so called dead-time effect. Information on the motor constant may be needed to improve the motor control performance. For example, a control technique called DTC (Direct Torque Control) requires a motor constant when calculating the torque and flux magnitude. As another example, in the case of predictive control, information on the motor parameters is required to generate voltage references. Because the constant of the motor fluctuates according to the driving environment, it is essential to estimate the correct motor constant because the control performance is degraded when incorrect motor information is used. In the proposed scheme, the motor constant estimated based on the voltage difference equation is obtained using the RLS (Recursive Least Square) technique. The RLS algorithm is applied to obtain the value through an iterative calculation so that the estimation performance is robust to noise. The simulation results carried out with surface mounted permanent magnet motors confirmed the validity of the proposed method.

DC Motor Position Control Using Variable Structure Systems with a New Sliding Surface (새로운 슬라이딩 라인을 갖는 가변구조 방식에 의한 직류 모터의 위치 제어)

  • 이정훈;이대식;이만고;이주장;윤명중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.1
    • /
    • pp.39-46
    • /
    • 1991
  • In the VSS control, the trajectories with a conventional sliding surface have a reaching phase which is an interval from the initial state to the first touching of the sliding surface. Since the sliding mode control can not be realized in a reaching phase, the trajectories may be sensitive to the disturbances and parameter variations. A simple nonlinear sliding surface is proposed to improve the robustness in a reaching phase. The position control of a PM DC servo motor using a new sliding surface is carried out and is compared to the one using the conventional surface. The sliding mode occurs in entire trajectories with the proposed new sliding surface and the improved robustness is obtained.

  • PDF

Analytical Prediction and Experimental Verification of Electromagnetic Performance of a Surface-Mounted Permanent Magnet Motor having a Fractional Slot/Pole Number Combination

  • Hong, Sang-A;Choi, Jang-Young;Jang, Seok-Myeong
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.84-89
    • /
    • 2014
  • This paper presents an analytical prediction and experimental verification of the electromagnetic performance of a parallel magnetized surface-mounted permanent magnet (SPM) motor having a fractional number of slots per pole combination. On the basis of a two-dimensional (2-D) polar coordinate system and a magnetic vector potential, analytical solutions for flux density produced by the permanent magnets (PMs) and stator windings are derived. Then, analytical solutions for back-electromotive force (emf) and electromagnetic torque are derived from these field solutions. The analytical results are thoroughly validated with 2-D nonlinear finite element (FE) analysis results. Finally, the experimental back-emf and electromagnetic torque measurements are presented to test the validity of the analysis.

Optimum Design of a Perpendicular Permanent Magnet Double-sided Linear Synchronous Motor using Response Surface Method (반응표면법을 이용한 수직배열형 양측식 영구자석 선형 동기전동기의 최적설계)

  • Kim, Chang-Eob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.26-30
    • /
    • 2016
  • This paper presented an optimum design of a perpendicular PMDSLSM (Permanent Magnet Double-sided Linear Synchronous Motor) to minimize the detent force. As an optimum method, the response surface method was used and 3D finite element method for the calculation. The design variables of the machine were the primary core width and thickness, and magnet width, thickness and length. Object functions were to minimize the detent force and maximize the thrust of the basic model. The results showed that the thrust force of the optimum design increased from 82.1N to 90.2N and detent force decreased from 15.2N to 2.8N, respectively, compared to the basic model.