• Title/Summary/Keyword: surface modulus

Search Result 689, Processing Time 0.027 seconds

Evaluation in Physiomechanical Characteristics of Carbonized Oriented Strand Board by Different Carbonizing Conditions

  • Lee, Min;Park, Sang-Bum;Lee, Sang-Min;Son, Dong-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.163-171
    • /
    • 2014
  • Environmental issues about indoor air quality have been increased and focused on volatile organic compounds (VOCs) caused cancer, asthma, and skin disease. Reducing VOCs has been attempted in many different methods such as using environmentally friendly materials and air cleaner or purifier. Charcoal is well known material for absorbing VOCs. Therefore, carbonized board from medium density fiberboard has been developed. We assumed that the source of carbonized boards can be any type of wood-based panels. In this study, carbonized boards were manufactured from oriented strand board (OSB) at 400, 600, 800, and $1000^{\circ}C$. Each carbonized OSB (c-OSB) was evaluated and determined physiomechanical characteristics such as exterior defects, dimensional shrinkage, modulus of elasticity, and bending strength. No external defects were observed on c-OSBs at all carbonizing conditions. As carbonizing temperature increased, less porosity between carbonized wood fibers was observed by SEM analysis. The higher rate of dimensional shrinkage was observed on c-OSB at $1000^{\circ}C$ (66%) than c-OSB at 400, 600, and $800^{\circ}C$ (47%, 58%, and 63%, respectively). The densities of c-OSBs were lower than original OSB, but there was no significant different among the c-OSBs. The bending strength of c-OSB increased 1.58 MPa (c-OSB at $400^{\circ}C$) to 8.03 MPa (c-OSB at $1000^{\circ}C$) as carbonization temperature increased. Carbonization temperature above $800^{\circ}C$ yielded higher bonding strength than that of gypsum board (4.6 MPa). In conclusion, c-OSB may be used in sealing and wall for decorating purpose without additional artwork compare to c-MDF which has smooth surface.

Tensile Tests for Copper Thin Foils by Using DIC Method (DIC 법을 이용한 구리박막의 인장시험)

  • Kim, Chung Youb;Song, Ji Ho;Park, Kyung Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1529-1534
    • /
    • 2012
  • In this study, tensile tests for 12-${\mu}m$-thick copper thin foils were performed by using the DIC method. The DIC method provided precise stress-strain curves for thin film materials, and a commercial inkjet printer can be simply and effectively used for printing speckle patterns on the specimen of Cu thin films whose surface contrast is too low to apply the DIC method. The mechanical properties of Cu thin foils obtained in this study are as follows: elastic modulus E = 89.2 GPa, 0.2% offset yield stress $S_{0.2%}$= 232.8 MPa, tensile strength $S_u$= 319.2 MPa, elongation at fracture ${\varepsilon}_f$=16.8 %, and Poisson's ratio ${\nu}$= 0.34.

Improvement of Low-quality Local Aggregates Using Coating Materials (코팅재료를 이용한 비쇄석골재의 성능향상)

  • Park Dae-Wook;Kim Min-Gu
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.39-48
    • /
    • 2006
  • A laboratory investigation was conducted wherein smooth, rounded, siliceous river gravel aggregates were coated with fine-grained polyethylene, carpet co-product, or cement + styrene butadiene rubber latex and used to prepare hot mix asphalt concrete specimens. Only the coarse (+ No.4) aggregates were coated. The concept was that the coatings would enhance surface roughness of the aggregates and, thus, produce asphalt mixtures with superior engineering properties. Hot mix asphalt specimens were prepared and evaluated using several standard and non-standard test procedures. Based on experiences during the coating processes and analyses of these limited test results, the following was concluded: All three aggregate coating materials increased Hveem and Marshall stability, tensile strength, and resilient modulus(stiffness). These findings are indicative of improved resistance to rutting and cracking in hot mix asphalt pavements prepared using coated gravel aggregates in comparison to similar uncoated gravel aggregates.

  • PDF

Characteristics of Plasma Polymer Thin Films for Low-dielectric Application

  • Cho, S.J.;Boo, J.H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.124-124
    • /
    • 2011
  • This study investigated the interaction of varied plasma power with ultralow-k toluene-tetraethoxysilane (TEOS) hybrid plasma polymer thin films, as well as changing electrical and mechanical properties. The hybrid thin films were deposited on silicon(100) substrates by plasma enhanced chemical vapor deposition (PECVD) system. Toluene and tetraethoxysilane were utilized as organic and inorganic precursors. In order to compare the electrical and the mechanical properties, we grew the hybrid thin films under various conditions such as rf power of plasma, bubbling ratio of TEOS to toluene, and post annealing temperature. The hybrid plasma polymer thin films were characterized by Fourier transform infrared (FT-IR) spectroscopy, atomic force microscopy (AFM), nanoindenter, I-V curves, and capacitance. Also, the hybrid thin films were analyzed by using ellipsometry. The refractive indices varied with the RF power, the bubbling ratio of TEOS to toluene, and the annealing temperature. To analyze their trends of electrical and mechanical properties, the thin films were grown under conditions of various rf powers. The IR spectra showed them to have completely different chemical functionalities from the liquid toluene and TEOS precursors. Also, The SiO peak intensity increased with increasing TEOS bubbling ratio, and the -OH and the CO peak intensities decreased with increasing annealing temperature. The AFM images showed changing of surface roughness that depended on different deposition rf powers. An nanoindenter was used to measure the hardness and Young' modulus and showed that both these values increased as the deposition RF power increased; these values also changed with the bubbling ratio of TEOS to toluene and with the annealing temperature. From the field emission scanning electron microscopy (FE-SEM) results, the thickness of the thin films was determined before and after the annealing, with the thickness shrinkage (%) being measured by using SEM cross-sectional images.

  • PDF

A Study on the Physical Properties of Reinforcing Fillers with Dual Phase Structure (이중상 구조를 가진 보강성 충전제의 물리적 특성 연구)

  • Lee, Seag;Park, Nam Cook
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.608-613
    • /
    • 1998
  • The purpose of this experiment was the physical properties of rubber compounds with DPCB and pure carbon black. Si-O peak in the silcia surface was observed at the range of wavenumber from 1,100 to 1,200 in the DPCB by FT-IR analysis. Cure rate of rubber compounds containing DPCB and organic silane coupling agent were (Si69) delayed compared with those containing pure carbon black. 300% modulus and interaction coefficient of DPCB with silane coupling agent were higher than those of pure carbon black and PICO weight loss amount showed constant value. It was found that $0^{\circ}C$ tan$\delta$ of rubber compounds with DPCB was larger than those of pure carbon black at 2.0% silane coupling agent based on 50 phr DPCB and $60^{\circ}C$ tan$\delta$ of rubber compounds with DPCB decreased as increasing the usage coupling agent. Consequently, it is postulated that DPCB is strong candidate material for lowering rolling resistance under constant abrasion resistance.

  • PDF

Elastic Modulus and Layer Coefficient of Permeable Block Pavements Based on Plate Load Tests (평판재하시험을 통한 투수 블록포장의 탄성계수 및 상대강도계수 산정)

  • Choi, Yong-Jin;Oh, Jeong-Ho;Han, Shin-In;Ahn, Jaehun;Shin, Hyun-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.75-80
    • /
    • 2017
  • Permeable block pavement systems are widely used to relieve the flood and enhance water circulation. However, domestic design method has not yet been established well. Although AASHTO 93 flexible pavement design method is applied as a structural design method outside the country, there is a lack of information on layer coefficient of the permeable pavement materials, which makes it difficult to apply the design to various materials. Therefore, in this study, a method of calculating the layer coefficient of permeable block pavement materials by plate load test was presented and the layer coefficient of a permeable block pavement in a testbed was evaluated. Overall, calculated layer coefficient of open graded aggregate and permeable block pavement surface layer were similar to those of the conventional values. The presented method may be used to evaluate layer coefficients of permeable block pavements for design.

Effect of 1,3-Diphenyl-guanidine (DPG) Mixing Step on the Properties of SSBR-silica Compounds

  • Lim, Seok-Hwan;Lee, Sangdae;Lee, Noori;Ahn, Byeong Kyu;Park, Nam;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.51 no.2
    • /
    • pp.81-92
    • /
    • 2016
  • 1,3-Diphenylguanidine (DPG) is commonly used as a secondary accelerator which not only acts as booster of cure but also activating silanization reaction. The aim of this study is to increase the interaction between silica and rubber by using DPG. In this study, mixing was proceeded in two steps. The T-1 compound is mixed DPG with silica and silane coupling agent in the kneader at high temperature which is named as $1^{st}$ mixing step. T-3 compound is mixed DPG with curatives in the two-roll mill at low temperature which is named as $2^{nd}$ mixing step. The T-2 compound is mixed a half of DPG in $1^{st}$ mixing step and the remainder is mixed in $2^{nd}$ mixing step. Total DPG content was equal for all compounds. When DPG is mixed with silica, silane coupling agent during the $1^{st}$ mixing step, a decrease in cure rate and an increase in scorch time can be seen. This indicates that DPG is adsorbed on the surface of silica. during rubber processing. However, bound rubber content is increased and dynamic properties are improved. These results are due to the highly accelerated silanization reaction. However, there are no significant difference in 100%, 300% modulus.

Preparation, Morphology and Electrical Conductivity of Polystyrene/Polydopamine- Carbon Nanotube Microcellular Foams via High Internal Phase Emulsion Polymerization (고내상 에멀젼 중합에 의한 폴리스티렌/폴리도파민-탄소나노튜브 미세기공 발포체의 제조, 모폴로지 및 전기 전도도)

  • Kim, Haseung;Na, Hyo Yeol;Lee, Jong Heon;Lee, Seong Jae
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.293-299
    • /
    • 2015
  • Conductive microcellular foams consisted of polystrene (PS) and polydopamine-coated carbon nanotube (PDA-CNT) were prepared via high internal phase emulsion (HIPE) polymerization and their morphology and electrical conductivity were investigated. CNT as a conductive nanofiller was modified to PDA-CNT by coating with hydrophilic PDA on the surface of CNT to increase aqueous phase dispersion and emulsion stability. It was possible to prepare the HIPEs having higher PDA-CNT content and the resultant foams having improved conductivity due to its good dispersion. The foams showed the morphology of interconnected cell structure. As PDA-CNT content increased, yield stress and storage modulus increased and cell size reduced. The PDA-CNT content showing electrical percolation threshold was ca. 0.58 wt% and the conductivity at PDA-CNT content of 5 wt% was increased to $10^{-3}S/m$.

Evaluation of Structural Stability at High Temperature for H-section Beams Made of Ordinary Strength Steels by Analytic Method (일반 구조용 강재 적용 H형강 보부재의 해석에 의한 고온내력 평가 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.28 no.2
    • /
    • pp.76-81
    • /
    • 2014
  • Structural stability of structural beams at high temperature had been evaluated though a horizontal furnace and a standard fire curve. If a structural method and a material are satisfied with the fire test, those are seemed to be guaranteed the safety of residences, fire services men, and properties of the buildings. However, that requires not only longer period but higher cost for making and testing of each structural element. That restrained from developing new methods and new fire protective materials. In this study, an analytic method was executed to demonstrate whether the analytic method using mechanical properties of structural steel at high temperature with heat transfer theory works is working. In this paper, the surface temperature rising and variance of structural stability of a simple H-section beam with a standard fire curve were evaluated and structural stabilities of H-section beam according to differences from length of beam were suggested.

Pipe Stiffness Prediction of GRP Flexible Pipe (GRP 연성관의 관강성 예측)

  • Lee, Young-Geun;Kim, Sun-Hee;Park, Joon-Seok;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.18-24
    • /
    • 2011
  • In this paper, we present the load-deflection behavior of GRP pipes. GRP buried pipes are widely used in construction in the advantage of their superior mechanical and physical characteristics such as high chemical resistance, high corrosion resistance, right weight, smooth surface of the pipe, and cost effectiveness from soil-structure interaction. To design flexible pipes to be buried underground, it should be based on the ASTM D2412(2010). When applying ASTM D 2412(2010) to the design, pipe stiffness(PS) must be predetermined by the parallel-plate test which requires tedious and laborious working process. To overcome such problems, the finite element simulations for finding the load-deflection behavior of the GRP flexible pipes is installed at UTM testing machine. In the finite element simulations, basic data, such as the modulus of elasticity of the material and cross-sectional dimension, is used. From the investigation, we found that the difference between experimental result and analytical prediction is less than 15% when the pipe deflected 3% and 5% of its vertical diameter although the pipe material is not uniform across the cross-section.