• Title/Summary/Keyword: surface modification by low energy ion beam

Search Result 16, Processing Time 0.029 seconds

MEVVA ion Source And Filtered Thin-Film Deposition System

  • Liu, A.D.;Zhang, H.X.;Zhang, T.H.;Zhang, X.Y.;Wu, X.Y.;Zhang, S.J.;Li, Q.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.2
    • /
    • pp.55-57
    • /
    • 2002
  • Metal-vapor-vacuum-arc ion source is an ideal source for both high current metal ion implanter and high current plasma thin-film deposition systems. It uses the direct evaporation of metal from surface of cathode by vacuum arc to produce a very high flux of ion plasmas. The MEVVA ion source, the high-current metal-ion implanter and high-current magnetic-field-filtered plasma thin-film deposition systems developed in Beijing Normal University are introduced in this paper.

  • PDF

Superhydrophilic Surface Modification of Polyvinylidene Fluoride by Low Energy and High Flux ion Beam Irradiation (저에너지 고출력 이온빔을 이용한 polyvinylidene fluoride 표면의 초친수성화)

  • Park Jong-Yong;Jung Yeon-Sik;Choi Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.382-387
    • /
    • 2005
  • Polyvinylidene fluoride (PVDF) surface was irradiated and became superhydrophilic by low energy (180 eV) and high flux $(\~10^{15}/cm{\cdot}s)$ ion beam. As an ion source, a closed electron Hall drift thruster of $\phi=70mm$ outer channel size without grid was adopted. Ar, $O_2$ and $N_2O$ were used for source gases. When $N_2O^+$ and $O_2^+$ reactive gas ion beam were irradiated with the ion fluence of $5\times10^{15}/cm^2$, the wetting angle for deionized water was drastically dropped from $61^{\circ}\;to\;4^{\circ}\;and\;2^{\circ}$, respectively. Surface energy was also increased up to from 44 mN/m to 81 mN/m. Change of chemical component in PVDF surface was analyzed by x-ray photoelectron spectroscopy. Such a great increase of the surface energy was intimately related with the increase of hydrophilic group component in reactive ion irradiated PVDF surfaces. By using an atomic force microscopy, the root-mean-square of surface roughness of ion irradiated PVDF was not much altered compared to that of pristine PVDF.

The effect of Ion Beam modification of Polyimide surface on alignment properties of liquid crystals

  • Cho, Seong-Jin;Kim, Chan-Soo;Roh, Jin-A;Gwag, Jin-Seog;Kim, Jae-Chang
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.107-112
    • /
    • 2003
  • The alignment effect of liquid crystals on Polyimide surfaces bombarded by a low energy argon ion beam and the effect of pretilt angle on viewing characteristics of an LCD cell are discussed. The unidirectional out-of-plane liquid crystal tilt angle is varied with various ion beam irradiation conditions, such as the energy of the incident ions, the angle of incidence and exposure time. As low pretilt angle is profitable for wider viewing property, LCD cell with ion beam modified Polyimide layer show wider viewing characteristics.

Fabrication of Nanostructures on InP(100) Surface with Irradiation of Low Energy and High Flux Ion Beams (고출력 저에너지 이온빔을 이용한 InP(100) 표면의 나노 패턴형성)

  • Park Jong Yong;Choi Hyoung Wook;Ermakov Y.;Jung Yeon Sik;Choi Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.361-369
    • /
    • 2005
  • InP(100) crystal surface was irradiated by ion beams with low energy $(180\~225\;eV)$ and high flux $(\~10^{15}/cm^2/s)$, Self-organization process induced by ion beam was investigated by examining nano structures formed during ion beam sputtering. As an ion source, an electrostatic closed electron Hall drift thruster with a broad beam size was used. While the incident angle $(\theta)$, ion flux (J), and ion fluence $(\phi)$ were changed and InP crystal was rotated, cone-like, ripple, and anistropic nanostrucuture formed on the surface were analyzed by an atomic force microscope. The wavelength of the ripple is about 40 nm smaller than ever reported values and depends on the ion flux as $\lambda{\propto}J^{-1/2}$, which is coincident with the B-H model. As the incident angle is varied, the root mean square of the surface roughness slightly increases up to the critical angle but suddenly decreases due to the decrease of sputtering yield. By the rotation of the sample, the formation of nano dots with the size of $95\~260\;nm$ is clearly observed.

Enhanced Interfacial Adhesion between Polymers and Metals(Cu) by Low Energy Ion-beam Irradiation with Reactive Gases (반응성 기체를 첨가한 저 에너지 이온빔 처리에 의한 고분자와 금속 간의 계면 접착력 증가에 관한 연구)

  • Lee, Ji-Seok;Seo, Yong-Sok;Kim, Han-Seong;Gang, Tae-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.75-78
    • /
    • 2005
  • Using a low-energy Ar+ ion-beam with and without reactive gases, polymers such as chemically stable poly(ether ether ketone) (PTFE) and poly(ether ether ketone) (PEEK) films were modified to have special surface features. The adhesion strength between the polymers and the copper was significantly improved because of both changes in the surface topography and chemical interactions due to polymer surface functionalization (oxidation and amination). The surface modification altered the failure mode from adhesive failure for the unmodified polymer/Cu interface to cohesive failure for the surface-modified polymer/Cu layer interface..

  • PDF

Characteristics of Polymer irradiated by Low energy Ion Beam

  • sung Han;Yoon, Ki-Hyun;Jung, Hyung-Jin;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.109-109
    • /
    • 1999
  • Recently, low energy ion beam irradiation has been adopted for surface modification. Low energy ion beam irradiation has many advantages in polymer engineering such as weak damage, good adhesion, noticeably-enhanced wettability(less than 15 degree), good reproducibility and so on. In this experiment, chemical reactions between free radicals and environment gas species have been investigated using angle-resolved XPS and TRIM code. In the case of low ion beam energy (around 1 keV), energy loss in polymer is mainly originated from atomic collisions instead of electronic interference. Atomic collisions could generated displaced atoms and free radicals. Cold cathode-ion source equipped with 5cm convex grid was used in an O2 environment. Base and working pressure were 5$\times$10-6 and 2.3$\times$10-4 Torr. Flow rates of argon and oxygen were fixed at 1.2 and 8 sccm. target materials are polyethylene polyvinyidenefluoride and polytetrafluoroethylene.

  • PDF

Fabrication of 2-layer Flexible Copper Clad Laminate by Vacuum Web Coater with a Low Energy Ion Source for Surface Modification (저 에너지 표면 개질 이온원이 설치된 진공 웹 공정을 이용한 2층 flexible copper clad laminate 제작)

  • Choi, Hyoung-Wook;Park, Dong-Hee;Choi, Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.17 no.10
    • /
    • pp.509-515
    • /
    • 2007
  • In order to fabricate adhesiveless 2-layer flexible copper clad laminate (FCCL) used for COF (chip on film) with high peel strength, polyimide (PI; Kapton-EN, $38\;{\mu}m$) surface was modified by reactive $O_2^+$ and $N_2O^+$ ion beam irradiation. 300 mm-long linear electron-Hall drift ion source was used for ion irradiation with ion current density (J) higher than $0.5\;mA/cm^2$ and energy lower than 200 eV. By vacuum web coating process, PI surface was modified by linear ion source and then 10-20 nm thick Ni-Cr and 200 nm thick Cu film were in-situ sputtered as a tie layer and seed layer, respectively. Above this sputtered layer, another $8-9{\mu}m$ thick Cu layer was grown by electroplating and subsequently acid and base resistance and thermal stability were tested for examining the change of peel strength. Peel strength for the FCCLs treated by both $O_2^+$ and $N_2O^+$ ion irradiation showed similar magnitudes and increased as the thickness of tie layer increased. FCCL with Cu (200 nm)/Ni-Cr (20 nm)/PI structure irradiated with $N_2O^+$ at $1{\times}10^{16}/cm^2$ ion fluence was proved to have a strong peel strength of 0.73 kgf/cm for as-received and 0.34 kgf/cm after thermal test.

ION BEAM AND ITS APPLICATIONS

  • Koh, S.K.;Choi, S.C.;Kim, K.H.;Cho, J.S.;Choi, W.K.;Yoon, Y.S.;Jung, H.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.110-114
    • /
    • 1997
  • Development of metal ion source growth of high quality Cu metal film formation of non-stoichiometric $SnO_2$ films of Si(100), and modification fo polymer surface by low enregy ion beam have been carried out at KIST Ion Beam Lab. A new metal ion source with high ion beam flux has been developed by a hybrid ion beam (HIB) deposition and non-stoichiometric $SnO_2$ films are controlled by supplying energy. The ion assisted reaction (IAR) in which keV ion beam is irradiated in reactive gas environment has been deveolped for modifying the polymers and enhancing adhesion to other materials and advantages of the IAR have been reviewed.

  • PDF

Research of Nitriding Process on Austenite Stainless Steel with Plasma Immersion Ion Beam (플라스마 이온증착 기술을 이용한 스테인리스강의 질화처리에 관한 연구)

  • Kim, Jae-Dol;Park, Il-Soo;Ok, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.262-267
    • /
    • 2008
  • Plasma immersion ion beam (PIIB) nitriding process is an environmentally benign and cost-effective process, and offers the potential of producing high dose of nitrogen ions in a way of simple, fast and economic technique for the high plasma flux treatment of large surface area with nitrogen ion source gas. In this report PIIB nitriding technique was used for nitriding on austenite stainless steel of AISI304 with plasma treatment at $250{\sim}500^{\circ}C$ for 4 hours, and with the working gas pressure of $2.67{\times}10^{-1}$ Pa in vacuum condition. This PIIB process might prove the advantage of the low energy high flux of ion bombardment and enhance the tribological or mechanical properties of austenite stainless steel by nitriding, Furthermore, PIIB showed a useful surface modification technique for the nitriding an irregularly shaped three dimensional workpiece of austenite stainless steel and for the improvement of surface properties of AISI 304, such as hardness and strength

Fabrication of interface-controlled Josephson junctions using Sr$_2$AlTaO$_6$ insulating layers

  • Kim, Jun-Ho;Choi, Chi-Hong;Sung, Gun-Yong
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.165-168
    • /
    • 2000
  • We fabricated ramp-edge Josephson junctions with barriers formed by interface treatments instead of epitaxially grown barrier layers. A low-dielectric Sr$_2$AlTaO$_6$(SAT) layer was used as an ion-milling mask as well as an insulating layer for the ramp-edge junctions. An ion-milled YBa$_2$Cu$_3$O$_{7-x}$ (YBCO)-edge surface was not exposed to solvent through all fabrication procedures. The barriers were produced by structural modification at the edge of the YBCO base electrode using high energy ion-beam treatment prior to deposition of the YBCO counter electrode. We investigated the effects of high energy ion-beam treatment, annealing, and counter electrode deposition temperature on the characteristics of the interface-controlled Josephson junctions. The junction parameters such as T$_c$, I$_c$c, R$_n$ were measured and discussed in relation to the barrier layer depending on the process parameters.

  • PDF