Browse > Article
http://dx.doi.org/10.3740/MRSK.2005.15.6.382

Superhydrophilic Surface Modification of Polyvinylidene Fluoride by Low Energy and High Flux ion Beam Irradiation  

Park Jong-Yong (Thin Film Materials Research Center, Korea Institute of Science and Technology)
Jung Yeon-Sik (Thin Film Materials Research Center, Korea Institute of Science and Technology)
Choi Won-Kook (Thin Film Materials Research Center, Korea Institute of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.15, no.6, 2005 , pp. 382-387 More about this Journal
Abstract
Polyvinylidene fluoride (PVDF) surface was irradiated and became superhydrophilic by low energy (180 eV) and high flux $(\~10^{15}/cm{\cdot}s)$ ion beam. As an ion source, a closed electron Hall drift thruster of $\phi=70mm$ outer channel size without grid was adopted. Ar, $O_2$ and $N_2O$ were used for source gases. When $N_2O^+$ and $O_2^+$ reactive gas ion beam were irradiated with the ion fluence of $5\times10^{15}/cm^2$, the wetting angle for deionized water was drastically dropped from $61^{\circ}\;to\;4^{\circ}\;and\;2^{\circ}$, respectively. Surface energy was also increased up to from 44 mN/m to 81 mN/m. Change of chemical component in PVDF surface was analyzed by x-ray photoelectron spectroscopy. Such a great increase of the surface energy was intimately related with the increase of hydrophilic group component in reactive ion irradiated PVDF surfaces. By using an atomic force microscopy, the root-mean-square of surface roughness of ion irradiated PVDF was not much altered compared to that of pristine PVDF.
Keywords
polyvinylidene fluoride; closed electron Hall drift thruster; surface modification by low energy ion beam; x-ray photoelectron;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Flitsch and D-Y. ShiH, J. Vac. Sci. Technol., A3, 2376 (1990)   DOI
2 S. K. Koh, S. K. Song, W. K. Choi, H. J. Jung and S. N. Han, J. Mater. Res., 10, 2390 (1995)   DOI
3 W. K. Choi, S. K. Koh and H. J. Jung, J. Vac. Sci. Technol., A14, 2366 (1996)   DOI   ScienceOn
4 V. Svorcik, E. Arenholz, V. Rybka and V. Hnatowicz, Nucl. Instrum. Meth., B122, 663 (1997)   DOI   ScienceOn
5 K. Sahre, K. -J. Eichhorn, F. Simon, D. Pleul, A. Janke and G. Gerlach, Surface and· Coatings Technol., 139, 257 (2001)   DOI   ScienceOn
6 A. I. Morozov and I. V. Melikov, J. Tech. Phys., 44, 544 (1974)
7 L. J.Gerenser, J. Vac. Sci. Technol., A6, 2897 (1998)   DOI
8 S. Kristensen, in:L. Cecille, J.C. Toussaint(Eds.), Future Industrial Prospects of Membrane Process, Elsevier, London, 118 (1989)
9 Y. W. Park and N. Inagaki, Polymer, 44, 1569 (2003)   DOI   ScienceOn
10 M. D. Duca, Carmina L. Plosceanu and Tatiana Pop, Polymer Degradation and Stability, 61, 65 (1998)   DOI   ScienceOn
11 S. Han, W. K. Choi, K. H. Yoon, S. K. Koh, J. Appl. Poymer Sci., 72, 41 (1997)   DOI   ScienceOn
12 F. F. Stengnard, J. Membrane Sci., 36, 257 (1988)   DOI   ScienceOn
13 A. Khodai-Joopary et al, Nucl. Tracks Radiat. Meas., 15, 167 (1988)   DOI   ScienceOn
14 H. Iwata et al, J. Membrane Sci., 38, 38 (1988)   DOI   ScienceOn
15 T. J. Reece, Stephen Ducharme, A. V. Sorokin and Matt poulsen, J. Appl. Phys. Lett., 82, 142 (2003)   DOI   ScienceOn
16 Mohamed Khayet, Geeta Chowdhury and Takeshi Matsuura, AIChE J., 48, 12 (2002)   DOI   ScienceOn
17 X. R Zheng, P. T. Lai, B. Y. Liu, Bin Li and Y. C. Cheng, Sensors and Actuators, A63, 147 (1997)   DOI   ScienceOn
18 E. Bormashenko, R. Pogreb, Y. Socol, M. H. Itzhaq, V. Streitsov, S. Sutovski, A. Sheshnev and Y. Bormashenko, Optical Materials, 27, 429 (2004)   DOI   ScienceOn
19 J. K. Sinha and P. M. Mujumdar, J. Sound Vibration, 265, 681 (2003)   DOI   ScienceOn
20 S. J. Kim and K. W. Yoon, J. Sound Vibration, 202(4), 461 (1997)   DOI   ScienceOn