• Title/Summary/Keyword: surface modeling

검색결과 2,250건 처리시간 0.027초

Interactive and Intuitive Physics-based Blending Surface Design for the Second Order Algebraic Implicit Surfaces

  • Park, Tae-Jung;Kam, Hyeong-Ryeol;Shin, Seung-Ho;Kim, Chang-Hun
    • 한국멀티미디어학회논문지
    • /
    • 제12권6호
    • /
    • pp.842-855
    • /
    • 2009
  • We present a physics-based blending method for the second order algebraic implicit surface. Unlike other traditional blending techniques, the proposed method avoids complex mathematical operations and unwanted artifacts like bulge, which have highly limited the application of the second order algebraic implicit surface as a modeling primitive in spite of lots of its excellent properties. Instead, the proposed method provides the designer with flexibility to control the shapes of the blending surface on interactive basis; the designer can check and design the shape of blending surfaces accurately by simply adjusting several physics parameter in real time, which was impossible in the traditional blending methods. In the later parts of this paper, several results are also presented.

  • PDF

NURBS 곡면기반의 기하학적 모델링과 셀 유한요소해석의 연동 (Integration of Shell FEA with Geometric Modeling Based on NURBS Surface Representation)

  • 최진복;노희열;조맹효
    • 대한기계학회논문집A
    • /
    • 제31권1호
    • /
    • pp.105-112
    • /
    • 2007
  • The linkage framework of geometric modeling based on NURBS(Non-Uniform Rational B-Spline) surface and shell finite analysis is developed in the present study. For this purpose, geometrically exact shell finite element is implemented. NURBS technology is employed to obtain the exact geometric quantities for the analysis. Especially, because NURBS is the most powerful and wide-spread method to represent general surfaces in the field of computer graphics and CAD(Computer Aided Design) industry, the direct computation of surface geometric quantities from the NURBS surface equation without approximation shows great potential for the integration between geometrically exact shell finite element and geometric modeling in the CAD systems. Some numerical examples are given to verify the performance and accuracy of the developed linkage framework. In additions, trimmed surfaces with some cutouts are considered for more practical applications.

Variational surface design under normal field guidance

  • Wu, Weidong;Yang, Xunnian
    • Journal of Computational Design and Engineering
    • /
    • 제2권3호
    • /
    • pp.129-136
    • /
    • 2015
  • This paper proposes a novel method for shape design of a Bezier surface with given boundary curves. The surface is defined as the minimizer of an extended membrane functional or an extended thin plate functional under the guidance of a specified normal field together with an initial prescribed surface. For given boundary curves and the guiding normal field, the free coefficients of a Bezier surface are obtained by solving a linear system. Unlike previous PDE based surface modeling techniques which construct surfaces just from boundaries, our proposed method can be used to generate smooth and fair surfaces that even follow a specified normal field. Several interesting examples are given to demonstrate the applications of the proposed method in geometric modeling.

하이브리드 삼차원 브레이딩 복합재료의 기하학적 모델링 (Geometrical Modeling for Hybrid 3-D Braided Composites)

  • 한문희;강태진;윤재륜
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.67-70
    • /
    • 2003
  • To develop an effective geometric modeling is essential in order that precise mechanical properties and the geometrical properties of the 3-D braided composites can be estimated. RVE(representative volume element) was adopted fur geometrical modeling. RVE consisted of IC(inner unit cell), ISUC(interior surface unit cell) and ESUC(exterior surface unit cell). The whole geometrical model fur hybrid 3-D braided composites was developed.

  • PDF

An algorithm for estimating surface normal from its boundary curves

  • Park, Jisoon;Kim, Taewon;Baek, Seung-Yeob;Lee, Kunwoo
    • Journal of Computational Design and Engineering
    • /
    • 제2권1호
    • /
    • pp.67-72
    • /
    • 2015
  • Recently, along with the improvements of geometry modeling methods using sketch-based interface, there have been a lot of developments in research about generating surface model from 3D curves. However, surfacing a 3D curve network remains an ambiguous problem due to the lack of geometric information. In this paper, we propose a new algorithm for estimating the normal vectors of the 3D curves which accord closely with user intent. Bending energy is defined by utilizing RMF(Rotation-Minimizing Frame) of 3D curve, and we estimated this minimal energy frame as the one that accords design intent. The proposed algorithm is demonstrated with surface model creation of various curve networks. The algorithm of estimating geometric information in 3D curves which is proposed in this paper can be utilized to extract new information in the sketch-based modeling process. Also, a new framework of 3D modeling can be expected through the fusion between curve network and surface creating algorithm.

The Estimated Source of 2017 Pohang Earthquake Using Surface Deformation Modeling Based on Multi-Frequency InSAR Data

  • Fadhillah, Muhammad Fulki;Lee, Chang-Wook
    • 대한원격탐사학회지
    • /
    • 제37권1호
    • /
    • pp.57-67
    • /
    • 2021
  • An earthquake occurred on 17 November 2017 in Pohang, South Korea with a strength of 5.4 Mw. This is the second strongest earthquake recorded by local authorities since the equipment was first installed. In order to improve understanding of earthquakes and surface deformation, many studies have been conducted according to these phenomena. In this research, we will estimate the surface deformation using the Okada model equation. The SAR images of three satellites with different wavelengths (ALOS-2, Cosmo SkyMed and Sentinel-1) were used to produce the interferogram pairs. The interferogram is used as a reference for surface deformation changes by using Okada to determine the source of surface deformation that occurs during an earthquake. The Non-linear optimization (Levemberg-Marquadrt algorithm) and Monte Carlo restart was applied to optimize the fault parameter on modeling process. Based on the modeling results of each satellite data, the fault geometry is ~6 km length, ~2 km width and ~5 km depth. The root mean square error values in the surface deformation model results for Sentinel, CSK and ALOS are 0.37 cm, 0.79 cm and 1.47 cm, respectively. Furthermore, the results of this modeling can be used as learning material in understanding about seismic activity to minimize the impacts that arise in the future.

알루미늄 돔 구조물에서 표면의 삼각형 최적 형상 모델링 (Modeling of the triangle optimum shape in the surface of an Aluminum dome structure)

  • 이성철;조종두
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.647-650
    • /
    • 1997
  • A complete dome structure is based on a basic dome modeling, and the basic dome modeling affects safety of the dome structure. In other to save the manufacture expenses, an optimum shape modeling of a dome structure is necessary work of before manufacture of the dome. In this study, modeling of the triangle optimum shape in the surface of an aluminum dome is more focused to optimize shape of the dome and save manufacture expenses. After being made the systematic procedure of the basic modeling, the programming work of the procedure is performed. The program is made by C language, and the trust of the program is proved by comparison between output data of the program and basic modeling in PATRAN.

  • PDF

측정 데이타를 이용한 터어빈 블레이드의 곡면설계 (Turbine Blade Surface Modeling of Point Data Fitting)

  • 류갑상;박삼진
    • 한국기계연구소 소보
    • /
    • 통권19호
    • /
    • pp.163-169
    • /
    • 1989
  • Many computer programs are being developed to aid the design of physical models. These efforts highlight the importance of computer model of three dimensional object. In this paper a CAD application program is introduced which can be implemented to modeling some part that composed with 3 types of surface form ; free form surface, fillt surface, surface of revolution, and a geometry description language which can represent a shape efficiently is preseneted.

  • PDF

3차원(次元) 구조물(構造物)의 복합곡면(複合曲面)모델링-이론(理論) 및 알고리즘 (Composite Surface Modeling of Three-Dimensional Structures -Theory and Algorithms-)

  • 고현무;박영하
    • 대한토목학회논문집
    • /
    • 제10권4호
    • /
    • pp.43-52
    • /
    • 1990
  • 3차원 구조물이 형상모델링과 유한요소망 자료의 생성을 위한 복합곡면모델링시스템의 기본적인 논리체계를 제안한다. 본 모델러는 경계표현방식을 바탕으로 곡선망모델과 곡면모델의 이중적인 계층적 구조로 이루어져 형상의 생성과 수정시 그 작업과 자료처리를 간편하고 신속하게 수행한다. 곡선망모델의 모델링요소로서 새로운 개념의 모델링곡선을 정의하며, 모든 곡선분절의 표현은 호길이매개변수를 사용한다. 이는 초유한사상 또는 쿤즈 패취에 의한 곡면모델링시 다중연결 곡면의 정의를 가능하게 하고, 내부 격자망의 적합성을 유지할 수 있는 근거가 된다. 생성된 곡면은 곡면모델의 논리체계에 의해 자동적으로 꼭지점, 모서리와 패취의 위상학적 요소로 표현되어 내부자료로 저장된다. 모든 작업은 컴퓨터 그래픽스를 이용한 대화식 방식으로 수행된다. 유한요소망의 자동생성과 시스템의 운용에 관한 사항은 계속될 논문에서 다룬다.

  • PDF