• Title/Summary/Keyword: surface model

Search Result 10,460, Processing Time 0.036 seconds

Friction Model of Sheet Metal Forming Considering Lubricant and Surface Roughness (윤활과 표면조도를 고려한 박판 성형 마찰 모델)

  • 이봉현;금영탁
    • Transactions of Materials Processing
    • /
    • v.10 no.7
    • /
    • pp.543-550
    • /
    • 2001
  • In order to find the effect of material property and lubricant viscosity on the frictional characteristics a sheet metal friction tester was designed and tensile test, surface roughness test, and friction test were performed with several kinds of drawing oils. Test results show that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extremely low or high, friction coefficient is also high. Using these test results, the friction model considering lubricant viscosity and surface roughness is developed. The validity and accuracy of the friction model are shown by comparing the punch loads among FEM analysis results employing current friction model and conventional friction model respectively and experimental measurement.

  • PDF

Effect of Drainage System on ET and Drainage Flows

  • ;Ph.D.,P.E.
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.E
    • /
    • pp.12-19
    • /
    • 1992
  • The effects of drainage system on evapotranspiration and drainage flows are studied. Data from drainage field experiment at Castalia in North Central Branch, Ohio Agricultural Research and Development Center were used in this study. A water table management model, ADATP (Agricultural Drainage and Pesticide Transport), which was developed by combining the GLEAMS and the subsurface drainage part of the DRAINMOD model with several modifications, was evaluated and used to predict hydrologic components. The ET is very much affected by the presence of tile drainage system but not significantly affected by the surface drainage system. The combined surface and subsurface drainage system gives the largest total outflow values while the surface drainage only system gives the smallest. Comparisons of model predicted and measured values of surface runoff only, subsurface drainage only, and combined surface runoff and subsurface drainage system are in satisfactory agreement. The model predicted values are within the range of the variations of the observed replications in general. Based on the results of the model evaluation study, it is concluded that ADAPT model can be used to design water table management systems.

  • PDF

Level Set Advection of Free Fluid Surface Modified by Surface Tension

  • Pineda, Israel;Gwun, Oubong
    • Smart Media Journal
    • /
    • v.4 no.2
    • /
    • pp.9-16
    • /
    • 2015
  • Fluids appear in innumerable phenomena; therefore, it is interesting to reproduce those phenomena by computer graphics techniques. However, this process is not trivial. We work with a fluid simulation that uses Navier-Stokes equations to model the fluid, a semi-Lagrangian approach to solve it and the level set method to track the surface of the fluid. Modified versions of the Navier-Stokes equations for computer graphics allow us to create a wide diversity of effects. In this paper, we propose a technique that allows us to integrate a force inspired by surface tension into the model. We describe which information we need and how to modify the model with this new approach. We end up with a modified simulation that has additional effects that might be suitable for computer graphics purposes. The effects that we are able to recreate are small waves and droplet-like formations close to the surface of the fluid. This model preserves the overall behavior governed by the Navier-Stokes equations.

Studies on the Adsorption Modeling of Cationic Heavy Metals(Pb, Cd) by the Surface Complexation Model (Surface Complexation Model을 이용한 양이온 중금속(Pb, Cd) 흡착반응의 모델화 연구)

  • 신용일;박상원
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.211-219
    • /
    • 1999
  • Surface complexation models(SCMs) have been performed to predict metal ion adsorption behavior onto the mineral surface. Application of SCMs, however, requires a self-consistent approach to determine model parameter values. In this paper, in order to determine the metal ion adsorption parameters for the triple layer model(TLM) version of the SCM, we used the zeta potential data for Zeolite and Kaolinite, and the metal ion adsorption data for Pb(II) and Cd(II). Fitting parameters determined for the modeling were as follows ; total site concentration, site density, specific surface area, surface acidity constants, etc. Zeta potential as a new approach other than the acidic-alkalimetric titration method was adopted for simulation of adsorption phenomena. Some fitting parameters were determined by the trial and error method. Modeling approach was successful in quantitatively simulating adsorption behavior under various geochemical conditions.

  • PDF

Simulation on Surface Tracking Pattern using the Dielectric Breakdown Model

  • Kim, Jun-Won;Roh, Young-Su
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.391-396
    • /
    • 2011
  • The tracking pattern formed on the dielectric surface due to a surface electrical discharge exhibits fractal structure. In order to quantitatively investigate the fractal characteristics of the surface tracking pattern, the dielectric breakdown model has been employed to numerically generate the surface tracking pattern. In dielectric breakdown model, the pattern growth is determined stochastically by a probability function depending on the local electric potential difference. For the computation of the electric potential for all points of the lattice, a two-dimensional discrete Laplace equation is solved by mean of the successive over-relaxation method combined to the Gauss-Seidel method. The box counting method has been used to calculate the fractal dimensions of the simulated patterns with various exponent $\eta$ and breakdown voltage $\phi_b$. As a result of the simulation, it is found that the fractal nature of the surface tracking pattern depends strongly on $\eta$ and $\phi_b$.

Prediction of Surface Residual Stress of Multi-pass Drawn Steel Wire Using Numerical Analysis (수치해석을 이용한 탄소강 다단 신선 와이어 표면 잔류응력 예측)

  • Lee, S.B.;Lee, I.K.;Jeong, M.S.;Kim, B.M.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.26 no.3
    • /
    • pp.162-167
    • /
    • 2017
  • The tensile surface residual stress in the multi-pass drawn wire deteriorates the mechanical properties of the wire. Therefore, the evaluation of the residual stress is very important. Especially, the axial residual stress on the wire surface is the highest. Therefore, the objective of this study was to propose an axial surface residual stress prediction model of the multi-pass drawn steel wire. In order to achieve this objective, an elastoplastic finite element (FE) analysis was carried out to investigate the effect of semi-die angle and reduction ratio of the axial surface residual stress. By using the results of the FE analysis, a surface residual stress prediction model was proposed. In order to verify the effectiveness of the prediction model, the predicted residual stress was compared to that of a wire drawing experiment.

The Prognostic Model for the Prediction of the Road Surface Temperature by Using the Surface Energy Balance Theory (지표면 에너지 수지 이론을 이용한 도로노면온도예측을 위한 예단 모델 개발)

  • Song, Dong-Woong
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.11
    • /
    • pp.17-23
    • /
    • 2014
  • In this study, the prognostic model for the prediction of the road surface temperature is developed using the surface energy balance theory. This model not only has a detailed micro meteorological physical attribute but also is able to accurately represent each surface energy budget. To verify the performance, the developed model output was compared with the German Weather Service (DWD)'s Energy Balance Model (EBM) output, which is based on the energy budget balance theory, and the observations. The simulated results by using both models are very similar to each other and are compatible with the observed data.

Model of the onset of liquid entrainment in large branch T-junction with the consideration of surface tension

  • Liu, Ping;Shen, Geyu;Li, Xiaoyu;Gao, Jinchen;Meng, Zhaoming
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.804-811
    • /
    • 2021
  • The T-junction exists widely in industrial engineering, especially in nuclear power plants, which plays an important part in nuclear power reactor thermal-hydraulics. However, the existing prediction models of the liquid entrainment are mainly based on the small branches or small breaks while there are a few researches for large branches (d/D > 0.2). Referring to the classical models about the onset of liquid entrainment of the T-junction, most of previous models regard liquid as ideal working fluid and ignore surface tension. This paper aims to study the effect of surface tension on the liquid entrainment, and develops an improved model based on the reasonable assumption. The establishment of new model employs the methods of force analysis, dimensional analysis. Besides, the dimensionless Weber number is adopted innovatively into the model to show the effect of surface tension. What is more, in order to validate the new model, three kinds of working fluids with different surface tensions are creatively adopted in the experiments: water, silicone oil and ethyl alcohol. The final results show that surface tension has a nonnegligible effect on the onset of liquid entrainment in large branch T-junction. The new model is well matched with the experimental data.

GIS Application Model for Spatial Simulation of Surface Runoff from a Small Watershed( II) (소유역 지표유출의 공간적 해석을 위한 지리정보시스템의 응용모형(II) - 격자 물수지 모형을 위한 GIS응용 모형 개발 -)

  • 김대식;정하우;김성준;최진용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.5
    • /
    • pp.35-42
    • /
    • 1995
  • his paper is to develop a GIS application model (GISCELWAB) for the spatial simulation of surface runoff from a small watershed. The model was constituted by three submodels : The input data extraction model (GISINDATA) which prepares cell-based input data automatically for a given watershed, the cell water balance model (CELWAB) which calculates the water balance for a cell and simulates surface runoff of watershed simultaneously by the interaction of cells, and the output data management model (GISOUTDISP) which visualize the results of temporal and spatial variation of surface runoff. The input data extraction model was developed to solve the time-consuming problems for the input-data preparation of distributed hydrologic model. The input data for CELWAB can be obtained by extracting ASCII data from a vector map. The output data management model was developed to convert the storage depth and discharge of cells into grid map. This model enables to visualize the spatial formulation process of watershed storage depth and surface runoff wholly with time increment.

  • PDF

Intramuscular EMG signal estimation using surface EMG signal analysis (표면 근전도 신호 해석에 의한 내부 근육 근전도 신호의 추정)

  • 왕문성;변윤식;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.641-642
    • /
    • 1986
  • We present a method for the estimation of intramuscular electromyographic(EMG) signals from the given surface EMG signals. This method is based on representing the surface EMG signal as an autoregressive(AR) time model with a delayed intramuscular EMG signal as an input. The parameters of the time series model that transforms the intramuscular signal to the surface signal are identified. The identified model is then used in estimating the intramuscular signal from the surface signal.

  • PDF