• Title/Summary/Keyword: surface micelle

Search Result 170, Processing Time 0.026 seconds

Surface Chemical Properties of Surface Active Aminocyclitol Derivatives (계면활성(界面活性) 아미노싸이클리톨 유도체(誘導體)의 계면화학적(界面化學的) 성질(性質))

  • Sohn, Joo-Hwan;Lee, Chang-Sup
    • Journal of the Korean Applied Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.45-52
    • /
    • 1987
  • Surface chemical properties including surface tension, Ross-Miles foaming power, foam stabilities, emulsifying properties, emulsion stabilities, effectiveness of dispersion, dispersion stabilites of the quaternary ammonium salt type deoxyaminoimositol derivatives such as sixteen kinds of dimethylafkyl-deoxyscyllo-inosityl- dimethylalkyl-2-deoxy-2-myo-inosityl-, dimethylakyl-2-deoxy-2-epi-inosityl- and dimethylalkyl-4-deoxy-4-myo-inosityl ammonium chlorides are tested. And critical micelle concentration of these compounds are estimated from the curves of surface tension and concentration. The experimental results show that the members of this class of compounds have necessary surface active properties to make them effective surfactants.

Effects of Cationic Surfactants on the Selected Physical Properties of DP Finished Cotton Fabrics (I) -Wetting Behavior of Single Fiber- (양이온계면활성제가 DP가공된 면직물의 물성에 미치는 영향 (I) -단섬유의 wetting 거동을 중심으로-)

  • 권영아
    • Textile Coloration and Finishing
    • /
    • v.13 no.1
    • /
    • pp.18-22
    • /
    • 2001
  • Effects of cationic surfactants old the wetting behavior of the DMDHEU treated cotton fibers were investigated using a technique based on the Wilhelmy principle. The results indicated that Interactions between the fiber and water ill the interface make contributions to wettability of the cotton fiber surface because of reorientation of polar groups at the interface. The effects of types and concentration of cationic surfactant on the wettability of both control and durable press(DP) finished cotton fiber are discussed. Below and near the critical micelle concentration(cmc), the adsorption of hexadecyltrimethylammoniumbromide(HTAB) on the control fiber makes the fiber surface more hydrophobic. Near and above the cmc of octadecyltrimethylammouniumbromide(OTAB) , the decrease in advancing contact angles indicates that the control cotton surface became hydrophilic. By the adsorption of both HTAB and OTAB onto the fiber surface, the hydrophobicity of the DP finished fiber surface became mere hydrophilic.

  • PDF

Synthesis and Properties of Polyoxyethylene Reactive Surfactant (폴리옥시에틸렌계 반응성 계면활성제의 합성 및 물성)

  • Cho, Jung-Eun;Lee, Sang-Chul;Park, Jong-Kwon;Kim, Kyung-Sil;Shin, Hye-Lin;Kim, Yu-Ri;Shin, Seung-Hoon;Jeong, Noh-Hee
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.241-246
    • /
    • 2019
  • In this paper, reactive surfactants were synthesized by using acrylic acid or 3-butenoic acid as nonionic surfactants, polyoxyethylene(23) lauryl ether (Brij 35) and polyoxyethylene(20) stearyl ether (Brij S20). The synthesis of surfactants was confirmed by FT-IR and $^1H$-NMR. The surface tension, emulsifying property, and foam power and stability were also measured. The surface tension value was 35~41 dyne/cm at an critical micelle concentration (cmc) which was measured as $1.0{\times}10^{-4}{\sim}9.7{\times}10^{-5}mol/L$ using a surface tension method. The emulsifying power of synthesized surfactant was measured with benzene, soybean oil and monomer. Also, the initial height of the bubbles and the height after 5 minutes were measured and the values were compared with each other.

The Surface Tension of Solutions of Ammonium Caprylate and Ammonium Caprate (Ammonium Caprylate 와 Ammonium Caprate 溶液의 表面張力)

  • Man Un Han;Chong Man Lee
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.4
    • /
    • pp.277-279
    • /
    • 1963
  • The surface tension of solutions of synthesized ammonium caprylate and ammonium caprate was measured by the ring method. The changes with of surface tension of solution of ammonium caprylate showed evidently that the salt had the critical micelle concentration(c.m.c.) at $30^{\circ}C$. The c.m.c. values of above two salts were determined from the change of surface tension of solution with concentration at various temperatures. The temperature dependence of the c.m.c. and the influence of addition of excess ammonia on the c.m.c. were also investigated.

  • PDF

characteristics of Biosurfactant Produced by Pseudomonas sp. EL-G527 from Activated Sludge

  • Lim, Eun-Gyoung;Cha, Mi-Sun;Park, Geun-Tae;Son, Hong-Joo;Lee, Sang-Joon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.4
    • /
    • pp.221-225
    • /
    • 2000
  • Pseudomonas sp. EL-G527 was grown to produce a biosurfactant on 2% n-hexadecane as the energy and carbon source. This biosurfactant significantly reduced the surface tension of water from 72 to 28 dyne/cm at a critical micelle concentration(CMC) of 140 mg/l at pH 2.0. As the pH value decreased, the reduction in the surface tension due to the biosurfactant increased. The surface activity of the biosurfactant was unaffected when the NaCl concentration was increased to 5% and the calcium ion concentration increased to 100 mM, plus it remained stable at 10$0^{\circ}C$ for 180 min.

  • PDF

Solution properties of sodium n-dodecyl sulfate in the presence of meso-tetrakis (N-methylpyridinium-4-yl) porphyrin (Meso-tetrakis (N-methylpyridinium-4-yl) porphyrin 존재 하에서 sodium n-dodecyl sulfate 용액 성질)

  • Hassanpour, Azin;Azani, Mohammad-Reza;Bordbar, Abdol-Khalegh
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.335-340
    • /
    • 2011
  • The solution properties of sodium n-dodecyl sulfate, as an anionic surfactant in the presence of a cationic watersoluble 5, 10, 15, 20-tetrakis (N-methylpyridinium-4-yl) porphyrin (TMPyP) has been comprehensively studied by means of conductometry, UV-vis and resonance light scattering (RLS) spectroscopies. The results represent the decreasing of critical micelle concentration of SDS solution due to increasing of TMPyP concentration. The stabilization of SDS micelle is due to neutralization of negative charge at the micelle surface. The presence of three different species of TMPyP in SDS solution has been unequivocally demonstrated: free porphyrin monomers, porphyrin monomers or aggregates bound to the micelles, and nonmicellar porphyrin/surfactant aggregates. Our results show SDS induced an aggregation in TMPyP. In fact two kinds of J-aggregations were observed: one of them for porphyrin monomers or aggregates bound to the micelles and the other for nonmicellar porphyrin/surfactant aggregates. However, the results represent the electrostatic interaction of TMPyP with SDS anion below the cmc.

Statistical Analysis of Synthesis of Gamma-alumina (γ-Al2O3) Nanoparticles Using Reverse Micelles (역미셀을 이용한 감마-알루미나 나노입자 합성에 대한 통계적 분석)

  • Lee, Kil Woo;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.351-354
    • /
    • 2017
  • An experimental design method was used to optimize the synthesis of gamma-alumina with a superior thermal stability using the reverse micelle method. First, twelve experimental conditions were derived by using the mixture design method to optimize conditions for the ratio of surfactant, water and oil, which are main factors in the synthesis process. When the particles synthesized by reverse micelle method were calcined at $900^{\circ}C$ under the designed condition, they all had gamma-alumina crystal structure although there were differences in particle sizes. The coefficient of determination of the second-order regression model using the derived experimental results was 93.68% and the P-value was 0.002. The synthesis conditions forgamma-alumina with various particle sizes were presented using surface and contour lines. As a result, it was calculated that the smallest particle size of about 2.8 nm was synthesized when the ratio of surfactant/water/oil was 0.3450/0.0729/0.5821.

Solubilization of Para-Halogenated Benzoic Acid Isomers by the Solution of Tetradecyltrimethylammonium Bromide (Tetradecyltrimethylammonium Bromide 용액에서 Para-할로겐화 벤조산 이성질체들의 가용화에 대한 연구)

  • Lee, Nam-Min;Lee, Byung-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.473-478
    • /
    • 2011
  • The interaction of para-halogenated benzoic acid isomers with the micellar system of tetradecyltrimethylammonium bromide was studied by the UV/Vis spectrophotometric method. The solubilization constants ($K_s$) of benzoic acid isomers into the micellar system of TTAB and the critical micelle concentration (CMC) of TTAB have been measured with the change of temperature. Various thermodynamic parameters have been calculated and analyzed from those measurement. The results show that the values of ${\Delta}G^{\circ}{_s}$ for the solubilization of all isomers are negative and the values of ${\Delta}H^{\circ}{_s}$ and ${\Delta}S^{\circ}{_s}$ are all positive within the measured temperature range. The effects of additives (n-butanol and NaCl) on the solubilization of benzoic acid isomers have been also measured. There was a great decrease on the values of $K_s$ and CMC simultaneously with these additives. From these changes we can postulate that the solubilization sites of each isomers in the TTAB micellar system are the surface or the palisade region of the micelle.

Optimization of Ascorbic Acid Encapsulation in PLA Microcapsules Using Double Emulsion Process (이중유화법을 이용한 PLA 마이크로캡슐 내부로의 아스코르브산 캡슐화 공정 최적화)

  • Ji Won Yun;Young Mi Chung
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.115-121
    • /
    • 2024
  • This study analyzed the influence of process variables affecting the thermodynamic equilibrium and fluid dynamics of interfaces such as reverse micelle, salt concentration, interfacial tension, and viscosity of fluids to optimize the microencapsulation process using the W1/O/W2 double emulsion method. The process variable with the greatest impact on encapsulation efficiency was found to be the difference in osmotic pressure between the W1 and W2 phases. It was observed that increasing the salt concentration in the W2 phase or decreasing the ascorbic acid concentration in the W1 phase resulted in higher encapsulation efficiency. Additionally, a larger difference in osmotic pressure led to increased damage to the surface of the microparticles, as confirmed by SEM images. The introduction of reverse micelles, which was anticipated to increase encapsulation efficiency, either had a low contribution or even decreased encapsulation efficiency. The yield of microcapsules was expressed as a universal function, applicable to all process conditions or solution compositions. According to this universal function, no further increase in yield was observed beyond the Ca (capillary number) of approximately 20.

Surface Chemistry in Biocompatible Nanocolloidal Particles (생체 적합한 나노입자와 계면화학)

  • Kim Jong-Duk;Jung Jae Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.295-305
    • /
    • 2004
  • Colloid and surface chemistry have been focused on surface area and surface energy. Local surface properties such as surface density, interaction, molecular orientation and reactivity have been one of interesting subjects. Systems of such surface energy being important would be listed as association colloid, emulsion, particle dispersion, foam, and 2-D surface and film. Such nanoparticle systems would be applied to drug delivery systems and functional cosmetics with biocompatible and degradable materials, while nanoparticles having its size of several nm to micron, and wide surface area, have been accepted as a possible drug carrier because their preparation, characteristics and drug loading have been inves-tigated. The biocompatible carriers were also used for the solubilization of insoluble drugs, the enhancement of skin absorption, the block out of UV radiation, the chemical stabilization and controlled release. Nano/micro emulstion system is classified into nano/microsphere, nano/microcapsule, nano/microemulsion, polymeric micelle, liposome according to its prep-aration method and size. Specially, the preparation method and industrial applications have been introduced for polymeric micelles self-assembled in aqueous solution, nano/microapsules controlling the concentration and activity of high concen-tration and activity materials, and monolayer or multilayer liposomes carrying bioactive ingredients.