• Title/Summary/Keyword: surface loading

Search Result 1,754, Processing Time 0.034 seconds

Material Characteristics of Dental Implant System with In-Vitro Mastication Loading

  • Jeong, Tae-Gon;Jeong, Yong-Hun;Lee, Su-Won;Yang, Jae-Ung;Jeong, Jae-Yeong;Park, Gwang-Min;Gang, Gwan-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.72-72
    • /
    • 2018
  • A dynamic fatigue characteristic of dental implant system has been evaluated with applying single axial compressive shear loading based on the ISO 14801 standard. For the advanced dynamic fatigue test, multi-directional force and motion needed to be accompanied for more information of mechanical properties as based on mastication in oral environment. In this study, we have prepared loading and motion protocol for the multi-directional fatigue test of dental implant system with single (Apical/Occlusal; AO), and additional mastication motion (Lingual/Facial; LF, Mesial/Distal; MD). As following the prepared protocol (with modification of ISO 14801), fatigue test was conducted to verify the worst case results for the development of highly stabilized dental implant system. Mechanical testing was performed using an universal testing machine (MTS Bionix 858, MN, USA) for static compression and single directional loading fatigue, while the multi-directional loading was performed with joint simulator (ADL-Force 5, MA, USA) under load control. Basically, all mechanical test was performed according to the ISO 14801:2016 standard. Static compression test was performed to identify the maximum fracture force with loading speed of 1.0 mm/min. A dynamic fatigue test was performed with 40 % value of maximum fracture force and 5 Hz loading frequency. A single directional fatigue test was performed with only apical/occlusal (AO) force application, while multi directional fatigue tests were applied $2^{\circ}$ of facial/lingual (FL) or mesial/distal (MD) movement. Fatigue failure cycles were entirely different between applying single-directional loading and multi-directional loading. As a comparison of these loading factor, the failure cycle was around 5 times lower than single-directional loading while applied multi-directional loading. Also, the displacement change with accumulated multi-directional fatigue cycles was higher than that of single directional cycles.

  • PDF

Properties of Carbon Black/SBR Rubber Composites Filled by Surface Modified Carbon Blacks

  • Dai, Shuang-Ye;Ao, Ge-You;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.8 no.2
    • /
    • pp.115-119
    • /
    • 2007
  • Properties of carbon blacks and carbon black/SBR rubber composites filled by surface modified carbon blacks were examined. Although the specific surface area of carbon blacks increased after the surface modifications with heat, acid, and base, there were no obvious changes in resistivity. The composites filled by heat treated carbon blacks showed a higher tensile strength and elongation than those filled by raw blacks. The acid and base treated carbon blacks filled composites also showed higher tensile strength but similar elongation values with those filled by raw blacks. With increasing loading ratio, both tensile strength and elongation increased, and appeared a maximum value at 30-40 phr. Modulus at 300% strain remained increasing with further loading of carbon blacks. At the same loading, the heat treated black filled composites showed similar modulus values with composites filled by raw blacks but for base and acid treated black filled composites much higher values were obtained. After the surface modification, the functional groups which played an important role in reinforcement action were changed.

Nitrification Performance of a Moving Bed Bioreactor (MBBR) at Different Ammonia and Hydraulic Air-Loading Rates under Seawater Conditions (해수 조건에서 총암모니아성 질소 부하량과 수리학적 공기 부하량에 따른 유동상 여과조의 질산화 성능 평가)

  • Jaegeon Lee;Younghun Lee;Jeonghwan Park
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.870-877
    • /
    • 2023
  • The purpose of this study was to assess the efficiency of nitrification based on ammonia loading rates and hydraulic air-loading rates in a moving bed bioreactor (MBBR) under seawater conditions. The goal was to provide foundational data for the design of these bio reactors. At an ammonia loading rate of 0.2 g TAN·m-2 surface area·day-1, the influent TAN concentration was determined to be 1.76±0.33 mg·L-1, which is below the safe concentration for fish survival (2 mg·L-1). Considering operational aspects, the optimal ammonia-loading rate was derived. Subsequently, experimental results for nitrification efficiency at the optimal ammonia-loading rate revealed that the optimum hydraulic air-loading rate was 1.8 L·air·m-2 surface area·min-1. This condition resulted in the lowest concentrations of TAN and NO2-N in the influent water, thus establishing the optimal hydraulic air-loading rate. A regression equation was derived for the ammonia-removal rate (Y) based on the ammonia-loading rate (x) and expressed as a 0.5-order equation (Y=ax0.5+b). Specifically, for TAN concentrations of 0-6 mg·L-1, the regression equation Y=0.1683x0.5-0.13628, was established.

Loading Path Optimization in Aluminum Tube Hydroforming using Response Surface Method (반응표면법을 이용한 알루미늄 튜브 하이드로포밍의 하중경로 최적화)

  • Lim, H.T.;Kim, H.J.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.314-317
    • /
    • 2007
  • Automotive rear subframe of aluminum tube was developed by using hydroforming process, based on the numerical analysis and physical tryouts. In the previous study, the effect of prebending was evaluated on the basis of forming limit diagram which had been obtained from free bulging, T-shape forming and cross-shape forming, using the developed tube hydroformability testing system. In order to get the sound products, appropriate internal pressure is to be imposed corresponding to the axial feeding. In this study, the loading path, the combination of internal pressure and axial feeding during the process, was optimized to ensure minimum thickness variation and dimensional accuracy, by using response surface method.

  • PDF

Stress Intensity Factors for an Interlaminar Crack in Composites under Arbitrary Crack Surface Loadings (임의의 균열표면 하중을 받는 복합채 중앙균열의 응력세기계수)

  • Lee, Gang-Yong;Park, Mun-Bok;Kim, Seong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.901-909
    • /
    • 1996
  • A model is constructed to evaluate the stress intensity factors(SIFs) for composites with an interlaminar crack subjected to as arbitrary crack surface loading. A mixed boundary value problem is formulated by Fourier integral transform method and a Fredholm integral equation of the second kind is derived. The integral equation is solved numerically and the mode I and II SIFs are evaluated for various shear modulus ratios between each layer, crack length to layer thickness, each term of crack surface polynomial loading and the number of layers. The mode I and II SIFs for the E- glass/epoxy composites as well as the hybrid composites are also evaluated.

A Study on Berth Allocation for Navy Surface Vessel Considering Precedence Relationship among Services (서비스 전후 우선순위를 고려한 해군함정의 부두 할당에 관한 연구)

  • 정환식;김승권
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.11a
    • /
    • pp.350-353
    • /
    • 2003
  • Navy surface vessels require pier services such as emergency repair, oil supply, fm loading/unloading, crane, standby readiness, normal repair, gun arrangement, ammunition loading, and food loading during the period in port. The purpose of this study is to establish efficient berth allocation plan for navy surface vessels in home port under the limited resources of piers and equipments. The study suggests Mixed Integer Programing (MIP) model for bath allocation problem, considering precedence relationships among services. For a effective analysis, the model is implemented by ILOG OPL(Optimization Programming Language) Studio 3.1 and ILOG Cplex 7.0. The results of the model show reduction of berth shifts and increasement of service benefits. And thus, it would be a possibility of contribution in the improvement of fleet readiness.

  • PDF

A Study on the Analysis of Fatigue-fractured Surface of Aluminium for Aircraft (항공기용 Al의 피로파면 분석에 관한 연구)

  • Joo, Won-Kyung;Kwun, Yong-Gu;Bae, Sung-In;Song, Jung-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.274-278
    • /
    • 2007
  • The purpose of this study is to analyze the important loads related with crack-growth in aircraft. Al Alloys mainly used in aircraft are Al2024 and Al7075 in Duralumin. In random fatigue loading, it has been understood crack-growth characteristic using fractured surface photograph by SEM. In order to obtained CTOD, we measured a crack size in wing frame part. As a result of fatigue experiment that accumulating plenty of fatigue loadings, we find more cracks than that produces in the same fatigue loading. The important loads relating to crack-growth was found in the largest strain cycle. Applying strain block in fatigue experiment, it is actually loading in connection of aircraft. In conclusion, These results can be used for preventing an accident owing fatigue-fracture in aircraft.

  • PDF

A Study on Unsteady Thermal Loading of Hydrogen Engine with Dual Injection (이중분사식 수소기관의 비정상 열부하 해석에 관한 연구)

  • Wei, Shin-Whan;Kim, Yun-Young;Kim, Hong-Jun;Lee, Jong-Tai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.2
    • /
    • pp.147-155
    • /
    • 2001
  • To measure of thermal loading in the combustion chamber of hydrogen engine with dual injection, instantaneous wall-surface temperature and unsteady heat flux of the cylinder head are measured and analyzed. The maximum wall surface temperature is shown in direct injection region which has large heat supplied. Partial and spatial temperatures have slight deviation in transient region of injection, though injection method change suddenly. All of thermal characteristics such as instantaneous temperature, temperature swing and heat flux of hydrogen engine with dual injection are remarkably higher than those of gasoline engine. It means necessity of additional countermeasure of thermal loading.

  • PDF

The Berth Allocation Method for the Navy Surface Vessels Considering Uncertainty (불확실성을 고려한 해군함정 선석 할당 방안)

  • Jung, Whan-Sik;Lee, Jae-Yeong;Lee, Yong-Dae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.748-758
    • /
    • 2010
  • Navy surface vessels require pier services such as emergency repair, oil supply, arm loading/unloading, craning, standby readiness, normal repair, gun arrangement, ammunition loading, and food loading during the period in port. The purpose of this study is to establish efficient berth allocation plan for navy surface vessels in home port under the limited resources of piers and equipments. This study suggests Mixed Integer Programming model for berth allocation problem, considering precedence relationships among services and the uncertainty of the arrival and departure for each vessel. For an effective analysis, the model is implemented by ILOG OPL(Optimization Programming Language) Studio 6.0 and ILOG CPLEX 11.1., which shows a reasonable result.

Stability of A Surcharged Tunnel under the Effect of Pre-Loading on the Adjacent Braced Wall (근접한 흙막이벽체에 가하는 선행하중의 영향을 받는 상재하중 재하 터널의 안정)

  • Kim, IL;Lee, Sang Duk
    • Journal of the Society of Disaster Information
    • /
    • v.4 no.2
    • /
    • pp.10-27
    • /
    • 2008
  • When the ground is excavated adjacent to the existing tunnel, which is loaded by the surcharge on the ground surface, the tunnel stability would be very sensitive to the deformation of the ground induced by the horizontal displacement of braced wall. The stability of the existing surcharged tunnel could be controlled by pre-loading on the braced wall. In this paper, it was investigated, if it would be possible to keep the existing surcharged tunnel stable by preventing the horizontal displacement of a braced wall by imposing the pre-loading during the ground excavation. For this purpose, large scale model tests were performed in a scale 1/10 at the test pit which was 2.0m in width and 6.0m in height and 4.0m in length. Isotropic test ground was constructed homogeneously by wet sand. Model tunnel was constructed in the test ground. Surcharge was loaded on the ground surface above the tunnel. During the tests, the behavior of model tunnel and model braced wall was measured. Numerical analyses were also performed in the same condition as the tests. And their results were compared to that of the model tests. Consequently, the effect of a surcharge could be compensated by imposing the pre-loading on the braced wall. The existing tunnel and the braced wall could be kept stable by preventing the horizontal displacement of the braced wall through pre-loading, although the tunnel is surcharged.

  • PDF