• Title/Summary/Keyword: surface integral method

Search Result 294, Processing Time 0.031 seconds

A COMPARATIVE STUDY OF BOND STRENGTH OF RECYCLED BRACKETS (재생 브라켓의 전단접착강도에 관한 비교 연구)

  • Shur, Cheong-Hoon;Choi, Eun-Ah
    • The korean journal of orthodontics
    • /
    • v.28 no.4 s.69
    • /
    • pp.641-657
    • /
    • 1998
  • This study was undertaken to compare the bond strength and the fracture site of new and recycled brackets according to the base design. 252 sound premolars extracted for orthodontic treatment were collected and Type I, Type II, Type III brackets were divided into four groups by recycling method Each bracket was then bonded to an extracted premolar. Instron Universal Testing Machine(model W) was used to measure the shear bond strength, and the surface of the recycled brackets were viewed in SEM For the analysis of the results, one way ANOVA and Scheffe's multiple range test was executed using the SPSSWIN program. 1. The shear bond strength showed statistically significant difference according to the bracket base design(p<0.001). Type III bracket(round indentation base, micro-etched) showed the highest bond strength, Type I bracket(foil-mesh base) was second, and Type II bracket(grooved integral base, micro-etched) was last. 2. The effect of recycling on the bond strength was different according to bracket type. The shear bond strength of Type I, Type II brackets showed the smallist reduction when treated for 1 minute in Big Jane(p<0.05), but the shear bond strength of Type III brackets showed no statistically significant difference according to recycling method(p>0.05). 3. In Type I, Type II brackets, frequent fracture site was bracket-resin interface, but in Type III brackets, about half of the resin was retained on the tooth surface frequently. 4. The shear bond strength was highest when about half of the resin was retained on the tooth surface(p<0.05). 5. The resin remnant on the bracket base after recycling had no effect on the shear bond strength.

  • PDF

Analysis of the Residual Stress due to Cold Expansion and Stress Intensity Factor in CT Specimen Using Finite Element Method (유한요소법을 이용한 CT 시편의 홀확장 잔류응력 및 응력확대계수 해석)

  • Jang, Jae-Soon;Yang, Won-Ho;Kim, Cheol;Ko, Myung-Hoon;Cho, Myoung-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.890-895
    • /
    • 2002
  • Cold expansion method is retarded of crack initiation due to the compressive residual stress developed on the hole surface. Previous research has just been study about residual stress distribution in the hole surrounding. But, The purpose of this study was to improve the understanding of the residual stress effect in hole surrounding as crack growth from another hole. In this paper, it is shown that residual stress is redistributed due to the application of cold expansion process for CT specimen using finite element method. It is further shown that tensile stress increases in proportion to cold expansion ratio in the vicinity of crack. It is thought that stress intensity factor increases with cold expansion ratio.

A Study on the Dynamic Ground Effect on Three-Dimensional Wings Using a Time Domain Panel Method (시간영역패널법을 사용한 3차원 날개의 동적지면효과 연구)

  • Han, Cheol-Heui;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.10-17
    • /
    • 2002
  • A study on the dynamic ground effect on three-dimensional wings is done using an indirect boundary element method(unsteady panel method). An integral equation is obtained by applying Green's theorem on all surfaces of the fluid domain. Constant strength dipole and source panels arc distributed on a wing's surface. The wake sheet is represented by constant strength dipoles. At each time step, a row of wake panels is assumed to be convected from the trailing edge of the wing. The tip vortex behind wings in dynamic ground effect moves outward. The amplitudes of the aerodynamic coefficients for the wings in dynamic ground effect are augmented much more comparing to the case in static ground effect.

An Experimental Method for Measuring Q (Q의 실험적 측정법)

  • Kim, Dong-Hak;Lee, Jeong-Hyun;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1607-1613
    • /
    • 2003
  • An experimental method to measure Q-parameter in-situ is described. The basic idea comes from the fact that the side necking near a crack tip indicates the loss of stress triaxiality, which can be scaled by Q. From the out-of-plane displacement and the in-plane strain near the surface of side necking, stress field averaged through the thickness is calculated and then Q is determined from the difference between the stress field and the HRR field corresponding to the identical J-integral. To prove the validity, three-dimensional finite element analysis has been performed for a CT configuration with side-groove. Q-value which was calculated directly from the near-tip stress field is compared with that determined by simulating the experimental procedure according to the proposed method, that is, the Q-value determined from the lateral displacement and the in-plane strain. In addition, the effect of location where the displacement and strain are measured is explored.

Engineering J-Integral Estimation for Internal Axial Surface Cracks in Cylinders (I) -Deformation Plasticity Based Estimation- (실린더에 존재하는 축방향 표면균열에 대한 공학적 J-적분식 (I) - 변형소성에 기초한 방법-)

  • Kim, Jin-Su;Kim, Yun-Jae;Park, Yeong-Jae;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1672-1679
    • /
    • 2002
  • This paper provides an engineering J estimation equation for cylinders with finite internal axial surfacecracks under internal pressure. The proposed equation is the J estimation equation based on deformation plasticity using Ramberg-Osgood (R-O) materials. Based on detailed 3-D FE results using deformation plasticity, plastic influence functions for fully plastic J components are tabulated for practically interesting ranges of the mean radius-to-thickness ratio, the crack depth-to-length ratio, the crack depth-to-thickness ratio. the strain hardening index for the R-O material, and the location along the semi-elliptical crack front. Based on tabilated plastic influence functions, the J estimation equation along the crack front is proposed and validated for R-O materials. Good agreements between the FE results and the proposed J estimation provide confidence in the use of the proposed method to elastic-plastic fracture mechanics of pressurized piping.

Analyses of Apparent Resistivity Responses from Near-Surface Cavities (지하천부의 공동에 의한 외견 비저항의 해석)

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.17 no.2
    • /
    • pp.101-107
    • /
    • 1984
  • This paper describes dipole-dipole apparent resistivity responses from near-surface cavities in otherwise homogeneous earth materials. In applying the dipole-dipole resistivity method to the problem of locating and delineating subsurface cavities, it is important to know apparent resistivity responses not only for conductive bodies but also for resistive ones. Dipole-dipole apparent resistivities for these bodies are calculated by the numerical modeling technique using an integral equation solution. The magnitude and pattern of apparent resistivity is highly dependent on the ratio of body resistivity to background resistivity. In conductive bodies, the largest anomaly of apparent resistivity appears at the outside of the body. In resistive bodies, however, the position of the largest anomaly coincides with the location of the body. The field results gathered at Okinawa, Japan in 1978 showed that peak anomalies occurred at the locations of air-filled cavities.

  • PDF

THE WARPED DISK OF INTEGRAL-SIGN GALAXY PGC 20348

  • Ann, H.B.
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.9-16
    • /
    • 2007
  • We examine the morphology and luminosity distribution of a strongly warped spiral galaxy PGC 20348 by conducting a detailed BVI CCD surface photometry using BOAO 1.8m telescope. The radial surface brightness shows a break at warp radius $(r_{\omega})$ with a shallow gradient in the inner disk and a steeper gradient in the outer disk. The luminosity of east side of the disk is ${\sim}0.5$ mag fainter than the west side at r > $r_{\omega}$. The reason for the asymmetric luminosity distribution is thought to be the asymmetric flarings that result in the formation of a large diffuse region at the edge of the east disk and a smaller diffuse region at the west disk. The vertical luminosity profiles show a thick disk component whose scale heights increase with increasing galactocentric distances. The warp of PGC 20348 seems to be made by the tidal interactions with the two massive companion galaxies since the flarings and radial increase of disk scale heights are thought to be general properties of tidally perturbed disks. According to the colors of the two clumps inside the diffuse region at the edge of the east disk, they seem to be sites of active star formation triggered by tidal forces from the companion galaxies.

DRASTIC IMPROVEMENT OF THERMAL EFFICIENCY BY RAPID PISTON-MOVEMENT NEAR TDC

  • Moriyoshi, Y.;Sano, M.;Morikawa, K.;Kaneko, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.295-301
    • /
    • 2006
  • A new combustion method of high compression ratio SI engine was studied and proposed in order to achieve high thermal efficiency, comparable to that of CI engine. Compression ratio of SI engine is generally restricted by the knocking phenomena. A combustion chamber profile and a cranking mechanism were studied to avoid knocking with high compression ratio. Because reducing the end-gas temperature will suppress knocking, a combustion chamber was considered to have a wide surface at the end-gas region. However, wide surface will lead to large heat loss, which may cancel the gain of higher compression ratio operation. Thereby, a special cranking mechanism was adapted which allowed the piston to move rapidly near TDC. Numerical simulations were performed to optimize the cranking mechanism for achieving high thermal efficiency. An elliptic gear system and a leaf-shape gear system were employed in numerical simulations. Livengood-Wu integral, which is widely used to judge knocking occurrence, was calculated to verify the effect for the new concept. As a result, this concept can be operated at compression ratio of fourteen using a regular gasoline. A new single cylinder engine with compression ratio of twelve and TGV(Tumble Generation Valve) to enhance the turbulence and combustion speed was designed and built for proving its performance. The test results verified the predictions. Thermal efficiency was improve over 10% with compression ratio of twelve compared to an original engine with compression ratio of ten when strong turbulence was generated using TGV, leading to a fast combustion speed and reduced heat loss.

Numerical Analysis of the Electromagnetic Waves scattered from a dielectric sphere by the BEM (경계요소법에 의한 3차원 유전체 구의 산란파 수치해석)

  • 김정혜
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.64-68
    • /
    • 1990
  • Boundary element method using linear basis function is applied to obtain fields scattered from a 3-D dielectric sphere. Electric field integral equation is used on the surfaces of the dielectric material where its surface is discretized into trilateral cells. For plane wave incidence, scattered fields by a dielectric sphere is calculated and compared with its analytic solution. The total electric fields are calculated on the great circle of the sphere boundary as well as the outside of the sphere in the plane of the wave vector and the polarization vector of the incident electric field.

  • PDF

Stability of TSK-type Time-Delay FLC (TSK 모델 시간 지연 퍼지제어기의 안정성)

  • 명환춘;변증남
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.347-353
    • /
    • 2001
  • A stable TSK -type FLC can be designed by the method of Parallel Distributed Compensation (PDC) [2] but in this case, solving the LMI problem is not a trivial task. To overcome such a difficulty, a Time-Delay based FLC (TDFLC) is proposed. TSK -type TDFLC consists of Time-Delay Control (TDC) and Sliding Mode Control (SMC) schemes, which result in a robust controller based upon an integral sliding surface. Finally, simulation study is conducted for a mass-spring-damper system.

  • PDF