• Title/Summary/Keyword: surface integral method

Search Result 294, Processing Time 0.034 seconds

3_D Time-Domain Analysis on the Motion of a Ship Advancing in Waves (파중 진행하는 선박의 3차원 시간영역 운동해석)

  • 홍도천;하태범;김대헌;송강현
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.164-168
    • /
    • 2001
  • The motion of a ship advancing in regular waves is analyzed in the time-domain using the convolution integral of the radiation forces. The memory effect functions and infinite frequency added masses are obtained from the solution of the three dimensional improved Green integral equation in the frequency domain by making use of the Fourier transformation. The ship motions in regular waves have been calculated by both the time and frequency domain methods. It has been shown that they agree very well with each other. The present time-domain method can be used to predict the time histories of unsteady motions in irregular waves. It can also be used to calculate the hydrostatic and Froude-Krylov forces over the instantaneous wetted surface of the ship hull to predict large ship motions, in a practical sense, advancing in large amplitude waves.

  • PDF

Fatigue Life Prediction by Elastic-Plastic Fracture mechanics for Surface Flaw Steel (표면결함재에 관한 탄소성 파괴역학에 의한 피로수명 예측)

  • Gang, Yong-Gu;Seo, Chang-Min;Lee, Jong-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.112-122
    • /
    • 1995
  • In this work, prediction of fatigue life and fatigue crack growth are studied. 4th order polynominal function is presented to describe the crack growth behaviors from artifical pit of SM45C steel. Crack growth curves obtained from 4th order polyminal growth equations are in good agreement with experimental data The crack growth behaviors at arbitrary stress levels and investigated by the concept of elastic-plastic fracture mechanics using ${\Delta}J$. Fatigue life prediction are carried out by numerical integral method. Prediction lives obtained by proposed method in this study, is in good agreement with the experimental ones. Life prediction results calculated by using of ${\Delta}J$ better than those of ${\Delta}K$.

  • PDF

Effect of the Vibration Modes on the Radiation Sound for Plate (강판의 진동모드를 고려한 방사음 예측에 관한 연구)

  • Kim Chang-Nam;Byun Young-Su;Kim Jeong-Man;Kim Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.73-80
    • /
    • 2006
  • In order to compute the radiated sound from a vibrating structure, the Rayleigh's integral equation has to be derived from the Helmholtz equation using Green's function. Generally, the surface velocity in the Rayleigh's integral equation uses the root mean square(rms) velocity. The calculation value is too large, because it's not considered cancelation. On the other hand. using the complex velocity, the sound pressure is calculated too small, because it considers that sound is perfectly canceled out. Therefore, this thesis proposes a correction factor(CF) which considers vibration modes and the method by which to calculate the radiating sound pressure. The theoretical results are compared with the experimental values, and the proposed method can be verified with confluence.

On the Wave Loads on a Large Volume Offshore Structure (대형해양구조물에 작용하는 파랑하중에 관하여)

  • 홍도천;홍은영;이상무
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.33-38
    • /
    • 1987
  • The first order mation responses of a floating structure and the hydrodynamic forces in regular waves are obtained by means of the linear potential theory. The first order potential is obtained directly from the numerical solution of the improved Green integral equation which is characterized by the combined surface distribution of sources and normal doublets. The mean second order wave drift force is also calculated by means of the near field method. It seems that the present method gives more accurate numerical results than other methods and the agreement between numerical and experimental results appears to be satisfactory.

  • PDF

Development of Automated J-Integral Analysis System for 3D Cracks (3차원 J적분 계산을 위한 자동 해석 시스템 개발)

  • 이준성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.74-79
    • /
    • 2000
  • Integrating a 3D solid modeler with a general purpose FEM code, an automatic nonlinear analysis system of the 3D crack problems has been developed. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-noded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The complete finite element(FE) model generated, and a stress analysis is performed. In this system, burden to analysts fur introducing 3D cracks to the FE model as well as fur estimating their fracture mechanics parameters can be dramatically reduced. This paper describes the methodologies to realize such functions, and demonstrates the validity of the present system.

  • PDF

3-D Magnetostatic Field Calculation by a Boundary Integral Equation Method using a Difference Field Concept (Difference field 개념의 경계적분방정식을 이용한 3차원 정자장 해석)

  • Park, Min-Cheol;Kim, Dong-Hun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.903-905
    • /
    • 2000
  • For an accurate analysis of three dimensional linear magnetostatic problems, a new boundary integral equation formulation is presented. This formulation adopts difference magnetic field concept and uses single layer magnetic surface charge as unknown. The proposed method is capable of eliminating numerical cancellation errors inside ferromagnetic materials. In additions, computing time and storage memory are reduced by 75% in comparison with the reduced and total scalar potential formulation. Two examples are given to show its efficiency and accuracy.

  • PDF

Electromagnetic scattering from a conductor above ground illuminated by an embedded antenna (매설된 안테나에 의한 지면 위 금속도체의 전자파 산란)

  • 장병찬;이승학;김채영
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.191-194
    • /
    • 2002
  • We analyzed radiation characteristics of dipole antenna in a lossy 9round with conducting object located above ground. Electric field integral equation is used to solve the problem. In this integral equation, GPOF(Generalized Pencil of Function) method is applied to derive the closed form of the electric field due to a current source. Surface current on a conductor is expanded with a well-known vector triangle basis function. The singular integration of a triangle patch is transformed to the non-singular integration by Duffy's method. This transformed non-singular integration is easily calculated by using one-dimensional Gaussian quadrature rule, instead of usual closed form evaluation.

  • PDF

A method for predicting the aerodynamic performance of low-speed airfoils (저속익형의 공기역학적 성능예측의 한 방법)

  • Yu, Neung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.240-252
    • /
    • 1998
  • The purpose of this study is to develop a method for predicting the aerodynamic performance of the low speed airfoils in the 2-dimensional, steady and viscous flow. For this study, the airfoil geometry is specified by adopting the longest chord line system and by considering local surface curvature. In case of the inviscid incompressible flow, the analysis is accomplished by the linearly varying strength vortex panel method and the Karman-Tsien correction law is applied for the inviscid compressible flow analysis. The Goradia integral method is adopted for the boundary layer analysis of the laminar and turbulent flows. Viscous and inviscid solutions are converged by the Lockheed iterative calculating method using the equivalent airfoil geometry. The analysis of the separated flow is performed using the Dvorak and Maskew's method as the basic method. The wake effect is also considered by expressing its geometry using the formula of Summey and Smith when no separation occurs. The computational efficiency is verified by comparing the computational results with experimental data and by the shorter execution time.

Robust surface segmentation and edge feature lines extraction from fractured fragments of relics

  • Xu, Jiangyong;Zhou, Mingquan;Wu, Zhongke;Shui, Wuyang;Ali, Sajid
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.79-87
    • /
    • 2015
  • Surface segmentation and edge feature lines extraction from fractured fragments of relics are essential steps for computer assisted restoration of fragmented relics. As these fragments were heavily eroded, it is a challenging work to segment surface and extract edge feature lines. This paper presents a novel method to segment surface and extract edge feature lines from triangular meshes of irregular fractured fragments. Firstly, a rough surface segmentation is accomplished by using a clustering algorithm based on the vertex normal vector. Secondly, in order to differentiate between original and fracture faces, a novel integral invariant is introduced to compute the surface roughness. Thirdly, an accurate surface segmentation is implemented by merging faces based on face normal vector and roughness. Finally, edge feature lines are extracted based on the surface segmentation. Some experiments are made and analyzed, and the results show that our method can achieve surface segmentation and edge extraction effectively.

On the Vorticity and Pressure Boundary Conditions for Viscous Incompressible Flows (비압축성 점성유동의 와도와 압력 경계조건)

  • Suh J.-C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.15-28
    • /
    • 1998
  • As an alternative for solving the incompressible Navier-Stokes equations, we present a vorticity-based integro-differential formulation for vorticity, velocity and pressure variables. One of the most difficult problems encountered in the vorticity-based methods is the introduction of the proper value-value of vorticity or vorticity flux at the solid surface. A practical computational technique toward solving this problem is presented in connection with the coupling between the vorticity and the pressure boundary conditions. Numerical schemes based on an iterative procedure are employed to solve the governing equations with the boundary conditions for the three variables. A finite volume method is implemented to integrate the vorticity transport equation with the dynamic vorticity boundary condition . The velocity field is obtained by using the Biot-Savart integral derived from the mathematical vector identity. Green's scalar identity is used to solve the total pressure in an integral approach similar to the surface panel methods which have been well-established for potential flow analysis. The calculated results with the present mettled for two test problems are compared with data from the literature in order for its validation. The first test problem is one for the two-dimensional square cavity flow driven by shear on the top lid. Two cases are considered here: (i) one driven both by the specified non-uniform shear on the top lid and by the specified body forces acting through the cavity region, for which we find the exact solution, and (ii) one of the classical type (i.e., driven only by uniform shear). Secondly, the present mettled is applied to deal with the early development of the flow around an impulsively started circular cylinder.

  • PDF