• Title/Summary/Keyword: surface impregnation

Search Result 267, Processing Time 0.025 seconds

Synthesis of Ethylamines for the Reductive Amination of Ethanol over Ni Catalysts: Effect of Supports (니켈 촉매상에서 에탄올의 환원성 아민화반응에 의한 에틸아민 제조 : 담체의 영향)

  • Jeong, Ye-Seul;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.714-722
    • /
    • 2019
  • Catalysts were prepared by using incipient wetness impregnation method with 17 wt% Ni on a support ($SiO_2-Y_2O_3$, $Al_2O_3$, $SiO_2-ZrO_2$, $SiO_2$, $TiO_2$, MgO) and the catalytic activity in the reductive amination of ethanol with ammonia in the presence of hydrogen was compared and evaluated. The catalysts used before and after the reaction were characterized using X-ray diffraction, nitrogen adsorption, ethanol-temperature programmed desorption (EtOH-TPD), isopropanol-temperature programmed desorption (IPA-TPD), and hydrogen chemisorption etc. In the case of preparing $ZrO_2$ and $Y_2O_3$ supports, the small amount of Si dissolution from the Pyrex reactor surface provoked the formation of mixed oxides $SiO_2-ZrO_2$ and $SiO_2-Y_2O_3$. Among the catalysts used, $Ni/SiO_2-Y_2O_3$ catalyst showed the best activity, and this good activity was closely related to the highest nickel dispersion, and low desorption temperature in EtOH-TPD and IPA-TPD. The low catalytic activity on Ni/MgO catalysts showed low activity due to the formation of NiO-MgO solid-solutions. In the case of $Ni/TiO_2$, the reactivity was low due to the low nickel metal phase due to strong metal-support interaction. In the case of using a support as $SiO_2-Y_2O_3$, $Al_2O_3$, $SiO_2-ZrO_2$, and $SiO_2$, the selectivities of ethylamines and acetonitrile were not significantly different at similar ethanol conversion.

Effects of Cu and K Addition on Catalytic Activity for Fe-based Fischer-Tropsch Reaction (Fe계 Fischer-Tropsch 반응에서 촉매활성에 대한 Cu와 K의 첨가 효과)

  • Lee, Chan Yong;Kim, Eui Yong
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Effects of the Cu and K addition and the reduction condition of Fe-based catalysts for Fischer-Tropsch reaction are studied in a continuous flow reactor in this research. The catalysts for the reaction were prepared by homogeneous precipitation followed by incipient wetness impregnation. Physicochemical properties of the $Al_2O_3$ supported Fe-based catalysts are characterized by various methods including X-ray diffraction (XRD), temperature programmed reduction (TPR), and scanning electron microscopy (SEM). Catalytic activities and stabilities of the Fe/Cu/K catalyst are investigated in time-on-stream for an extended reaction time over 216 h. It is found that a reduction of the catalysts using a mixture of CO and $H_2$ can promote their catalytic activities, attributed to the iron carbides formed on the catalysts surface by X-ray diffraction analysis. The addition of Cu induces a fast stabilization of the reaction reducing the time to reach at the steady state by enhancement of catalytic reduction. The addition of K to the catalysts increases the CO conversion, while the physical stability of catalyst decreases with potassium loading up to 5%. The Fe/Cu (5%)/K (1%) catalyst shows an enhanced long term stability for the Fischer-Tropsch reaction under the practical reaction condition, displaying about 15% decrease in the CO conversion after 120 h of the operation.

Optimization of Preparation Conditions of Vanadium-Based Catalyst for Room Temperature Oxidation of Hydrogen Sulfide (황화수소 상온 산화를 위한 바나듐계 촉매의 제조 조건 최적화 연구)

  • Kang, Hyerin;Lee, Ye Hwan;Kim, Sung Chul;Chang, Soon Woong;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.326-331
    • /
    • 2021
  • In this study, the preparation conditions for a TiO2-based vanadium-based catalyst for oxidizing hydrogen sulfide at room temperature were optimized. Four types of commercial TiO2 were used as a catalyst support and the performance evaluation of hydrogen sulfide oxidation at room temperature of V/TiO2 by varying vanadium contents prepared using the impregnation method was performed. Among the types of TiO2 tested, it was confirmed that the catalyst with the vanadium content of 5% and based on TiO2(A) has the best hydrogen sulfide conversion rate of 58%. By comparing the physical and chemical properties of the catalyst, the specific surface area of the support and the species of dominant vanadium are the major factor in catalyst performance. In order to confirm the regeneration characteristics of the catalyst with reduced activity, heat treatment was performed at 400 ℃ for 2 h, and the amount of hydrogen sulfide oxidation decreased by 10% due to the partial deposition of sulfur in the regenerated catalyst, but it was confirmed that the initial performance was similar.

Synthesis and Characteristic Evaluation of Downward Conversion Phosphor for Improving Solar Cell Performance (태양전지 성능향상을 위한 하향변환 형광체의 합성 및 특성평가)

  • Jae-Ho Kim;Ga-Ram Kim;Jin-To Choi;Soo-Jong Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.523-528
    • /
    • 2023
  • The applicability as a material to improve solar cell performance was reviewed by synthesizing a phosphor that emits red wavelengths by a liquid synthesis method using a metal salt aqueous solution and a polymer medium as a starting material. An aqueous solution was prepared using nitrate of metals such as Ca, Zn, Al, and Eu, and a precursor impregnated with starch, a natural polymer, was sintered to synthesize CaZnAlO:Eu phosphor powder. The surface structure and composition analysis of the synthesized CaZnAlO:Eu phosphor powder were analyzed by scanning electron microscope(SEM) and energy-dispersed X-ray spectroscopy(EDS). The crystal structure of CaZnAlO:Eu phosphor particles was analyzed by an X-ray diffraction analyzer (XRD). As a result of measuring the photoluminescence(PL) characteristics of the phosphor, it was confirmed that a red phosphor with a light emitting wavelength of 650-780nm was successfully synthesized. According to SEM and EDS analysis, the synthesized Ca14Zn6Al9.93O35:Eu3+0.07 phosphor powder has a uniform particle size, and Eu ions used as an activator are present. The synthesized CZA:Eu3+ phosphor can be used as a material that can increase the light absorption efficiency of the solar cell by converting ultraviolet or visible light down conversion into a wavelength in the near-infrared region.

The Activity of Standard and Fast SCR over V-based Catalysts Supported on Various TiO2 (다양한 TiO2에 담지된 바나디아 촉매의 표준 및 빠른 SCR 활성)

  • Ji Eun Jeong;Yeon Jeong Jo;Inyoung Lee;Jeongkeun Lee;Chang-Yong Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.584-589
    • /
    • 2023
  • The physicochemical properties of VOx/TiO2 catalysts with different TiO2 supports were analyzed, and SCR reactions were performed. VOx/TiO2 catalysts were prepared by impregnation using anatase TiO2, which was manufactured by Sigma Aldrich and prepared from TiOCl2 and titanium isopropoxide (TTIP) as a precursor. They are denoted as VS, VC, and VP. The specific surface area of the VS was 1/10 or less of that of the VC and VP, and the dispersibility of vanadium oxide was relatively low. As a result of XPS analysis, the ratio of adsorbed oxygen was higher in VS and VP with Ti3+ than in VC. In VC and VP, vanadium mainly existed in V4+ and V3+ states in relation to the dispersibility of vanadium oxide. The amount of adsorbed oxygen contributed more to NH3-SCR activity than vanadium oxide dispersibility below 250 ℃, while vanadium oxide dispersibility contributed more to activity beyond 300 ℃. The fast SCR activity in all three samples was the highest at NO2/NOx = 0.5, followed by VS < VC < VP samples. It was determined that the dispersibility of vanadium oxide had a significant effect on fast NH3-SCR activity.

A Study on the Adsorption and Desorption Characteristics of Metal-Impregnated Activated Carbons with Metal Precursors for the Regeneration and Concentration of Ammonia (암모니아의 재생 및 농축을 위한 금속 전구체에 따른 금속 첨착 활성탄의 흡착 및 탈착 특성에 관한 연구)

  • Cho, Gwang Hee;Park, Ji Hye;Rasheed, Haroon Ur;Yoon, Hyung Chul;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.137-144
    • /
    • 2020
  • Metal-impregnated activated carbons were prepared via ultrasonic-assisted impregnation method for regeneration and low ammonia concentration. Magnesium and copper were selected as metals, while chloride (Cl-) and nitrate (NO3-) precursors were used to impregnate the surface of activated carbon. The physical and chemical properties of the prepared adsorbents were characterized by TGA, BET, and NH3-TPD. The ammonia breakthrough test was carried out using a fixed bed and flowing ammonia gas (1000 mg L-1 NH3, balanced N2) at 100 mL min-1, under conditions of temperature swing adsorption (TSA) and pressure swing adsorption (PSA, 0.3, 0.5, 0.7, 0.9 Mpa). The adsorption and desorption performance of ammonia were in the order of AC-Mg(Cl) > AC-Cu(Cl) > AC-Mg(N) > AC-Cu(N) > AC through NH3-TPD and TSA and PSA processes. AC-Mg(Cl) using MgCl2 showed the average adsorption amount of 2.138 mmol/g at TSA process. Also, AC-Mg(Cl) showed the highest initial adsorption amount of 3.848 mmol/g at PSA 0.9 Mpa. When metal impregnated the surface of the activated carbon, it was confirmed that not only physical adsorption, but also chemical adsorption increased, making enhancement in adsorption and desorption performances possible. Also, the prepared adsorbents showed stable adsorption and desorption performances despite repeated processes, confirming their applicability in the TSA and PSA processes.

Development of Potassium Impregnated Carbon Absorbents for Indoor CO2 Adsorption (K계열 함침 탄소계 흡착제의 실내 저농도 이산화탄소 흡착성능 강화)

  • Jeong, Se-Eun;Wang, Shuang;Lee, Yu-Ri;Won, Yooseob;Kim, Jae-Young;Jang, Jae Jun;Kim, Hana;Jo, Sung-ho;Park, Young Cheol;Nam, Hyungseok
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.606-612
    • /
    • 2022
  • Relatively high indoor CO2 concentration (>1,000 ppm) has a negative impact on human health. In this work, indoor CO2 adsorbent was developed by impregnating KOH or K2CO3 on commercial activated carbon, named as KOH/AC and K2CO3/AC. Commercial activated carbon (AC) showed relatively high BET surface area (929 m2/g) whereas KOH/AC and K2CO3/AC presented lower BET surface area of 13.6 m2/g and 289 m2/g. Two experimental methods of TGA (2,000 ppmCO2, weight basis) and chamber test (initial concentration: 2,000 ppmCO2, CO2 IR analyzer) were used to investigate the adsorption capacity. KOH/AC and K2CO3/AC exhibited similar adsorption capacities (145~150 mgCO2/g), higher than K2CO3/Al+Si supports adsorbent (84.1 mgCO2/gsample). Similarly, chamber test also showed similar trend. Both KOH/AC and K2CO3/AC represented higher adsorption capacities (KOH/AC: 93.5 mgCO2/g K2CO3/AC: 94.5 mgCO2/gsample) K2CO3/Al+Si supports. This is due to the KOH or K2CO3 impregnation increased alkaline active sites (chemical adsorption), which is beneficial for CO2 adsorption. In addition, the regeneration test results showed both K-based adsorbents pose a good regeneration and reusability. Finally, the current study suggested that both KOH/AC and K2CO3/AC have a great potential to be used as CO2 adsorbent for indoor CO2 adsorption.