• Title/Summary/Keyword: surface hydrophobicity

Search Result 419, Processing Time 0.039 seconds

Characterization of the Surface Contribution to Fluorescence Correlation Spectroscopy Measurements

  • Chowdhury, Salina A.;Lim, Man-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.583-589
    • /
    • 2011
  • Fluorescence correlation spectroscopy (FCS) is a sophisticated and an accurate analytical technique used to study the diffusion of molecules in a solution at the single-molecule level. FCS is strongly affected by many factors such as the stability of the excitation power, photochemical processes, mismatch between the refractive indices, and variations in the cover glass thickness. We have studied FCS near the surface of a cover glass by using rhodamine 123 as a fluorescent probe and have observed that the surface has a strong influence on the measurements. The temporal autocorrelation of FCS decays with two characteristic times when the confocal detection volume is positioned near the surface of the cover glass. As the position of the detection volume is moved away from the surface, the FCS autocorrelation becomes one-component decaying; the characteristic time of the decay is the same as the faster-decaying component in the FCS autocorrelation near the surface. This observation suggests that the faster component can be attributed to the free diffusion of the probe molecules in the solution, while the slow component has its origin from the interaction between the probe molecules and the surface. We have characterized the surface contribution to the FCS measurements near the surface by changing the position of the detection volume relative to the surface. The influence of the surface on the diffusion of the probe molecules was monitored by changing the chemical properties of the surface. The surface contribution to the temporal autocorrelation of the FCS strongly depends on the chemical nature of the surface. The hydrophobicity of the surface is a major factor determining the surface influence on the free diffusion of the probe molecules near the surface.

Characteristic Investigation on Super-Hydrophobicity of PTFE Thin Films Deposited on Al Substrates Using RF-Magnetron Sputtering Method (고주파 마그네트론 스퍼터링 방법을 사용하여 Al 기판위에 증착된 PTFE 박막의 초-발수에 관한 특성 연구)

  • Bae, Kang;Kim, Hwa-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.64-69
    • /
    • 2011
  • Super-hydrophobic properties have been achieved on the rf-sputtered polytetrafluoroethylene(PTFE) films deposited on etched aluminum surfaces. The microstructural evolution created after etching has been investigated by FESEM. The water contact angle over $160^{\circ}$ can be achieved on the rf-sputtered ultra-tihn PTFE film less than 10 nm coated on aluminum surface etched with 7 wt.%, 12.5 wt.%, and 15 wt.% HCl concentration for 12 min. XPS analysis have revealed the presence of a large quantity of $-CF_3$ and $-CF_2$ groups in the rf-sputtered PTFE films that effectively can reduce the surface energy of etched aluminum. The presence of patterned morphology along with the low surface energy at the rf-sputtered PTFE coating makes the aluminum surface with high super-hydrophobic property.

Enhancement of Hydrophobicity by a Heat Treatment of Zinc Aluminate Thin Film Deposited on Glass Substrate (글라스 기판 위에 증착된 Zin Aluminate 박막의 열처리를 통한 소수성 특성의 향상)

  • Seo, Sang-Young;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.249-254
    • /
    • 2020
  • An 80 nm thick zinc aluminate thin film was deposited on a glass substrate via radio-frequency (rf) magnetron sputtering and heat treated to analyze changes in the wetting angles due to a surface modification. The thin films were modified from hydrophilic to hydrophobic by a simple thermal treatment. The surface modification from a heat treatment increased the wetting angles up to 111°, which was explained by the relationship with the excess surface area. The wetting angles of the annealed thin films decreased with increasing exposure time under ambient conditions, which was attributed to the oxygen vacancies in the films that were introduced during deposition. The annealed thin films were treated by ionized oxygen via oxygen plasma. After the oxygen plasma treatment, the decreased wetting angles were maintained at ~95° for 11 days.

A Study on the Super-hydrophobicity of Poly(ethylene terephthalate) Fabric by TiO2 Nano-particles Coating (TiO2 나노입자 코팅에 의한 PET섬유의 초발수성에 관한 연구)

  • Park, Sung-Min;Kwon, Il-Jun;Kim, Ji-Yeon;Kim, Chang-Nam;Yeum, Jeong-Hyun;Yoon, Nam-Sik
    • Textile Coloration and Finishing
    • /
    • v.21 no.1
    • /
    • pp.30-37
    • /
    • 2009
  • Studies on plants such as lotus leaf suggested that dual-scale structure could contribute to super-hydrophobicity. We introduced super-hydrophobicity onto poly(ethylene terephthalate)(PET) fabric with dual-scale structure by assembling $TiO_2$ nano sol. PET fabric was treated with $TiO_2$ sol, water-repellent agent using various parameters such as particle size, concentration. Morphological changes by particle size were observed using field emmission scanning electron microscopy(FE-SEM) and AFM measurement, contact angle measurement equipment. The contact angle of water was about 138.5$^{\circ}$, 125.8$^{\circ}$, 125.5$^{\circ}$ and 108.9$^{\circ}$ for PET fabric coated with 60.2nm, 120.1nm, 200nm and 410.5nm $TiO_2$ particles, compared with about 111.5$^{\circ}$ for PET fabric coated with water repellent. When we mixed particle sizes of 60.2nm and 120.1nm by 7:3 volume ratio, the contact angle of water was about 132.5$^{\circ}$. And we mixed particle sizes of 60.2nm and 200nm by 7:3 volume ratio, the contact angle of water was about 141.8$^{\circ}$. Also we mixed particle sizes of 60.2nm and 410.5nm by 7:3 volume ratio, the best super-hydrophobicity was obtained. In this paper, we fabricated various surface structures to the water-repellent surfaces by using four types of $TiO_2$ nano-particles, and we found that the nanoscale structure was very important for the super-hydrophobicity.

Comparison of Environmental Stress Tolerance Between Lactobacillus fermentum Strains with High and Low Cell Surface Hydrophobicity

  • Li, Shao-Ji;Jeon, Jeong-Min;Hong, Sang-Won;So, Jae-Seong
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.257-261
    • /
    • 2008
  • Previous studies have suggested a possible correlation between cell surface hydrophobicity (CSH) and stress tolerance in Bifidobacterium. In this study, the relationship was examined between CSH and environmental stress tolerance in Lactobacillus spp. By measuring the adhesion to hexadecane, 2 Lactobacillus fermentum strains- KLB 261 and KLB 231 were found to have high and low CSH, respectively. To measure their tolerance to various stresses, cells were subjected to salt (2 M NaCl), acid (pH 2), $H_2O_2$ (0.01 %, v/v), ethanol (20%, v/v), heat ($60^{\circ}C$), and cold ($-20^{\circ}C$). Compared with KLB 231, the hydrophobic KLB 261 was found to be much more resistant to the various stresses examined. After being subjected to different stresses for a period of time, KLB 261 and KLB 231 showed 50 and 0% survivability in 2 M NaCl, 108.2 and 0.6% in 0.01 %(v/v) $H_2O_2$, 40.2%(v/v), and 3.7% at $60^{\circ}C$ incubation, 4 and 0.6% at $-20^{\circ}C$, 12.9 and 0.1 % in pH 2, 33.8 and 0.2% in 20%(v/v) ethanol, respectively. Autoaggregation test and morphological observation were also conducted in an attempt to explain these differences. These results suggested that high CSH could strengthen the stress tolerance of lactobacilli.

Virulence, Resistance Genes, and Transformation Amongst Environmental Isolates of Escherichia coli and Acinetobacter spp.

  • Doughari, Hamuel James;Ndakidemi, Patrick Alois;Human, Izanne Susan;Benade, Spinney
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 2012
  • The association of verotoxic E. coli and Acinetobacter spp. with various antibiotic-resistant, diarrhogenic, and nosocomial infections has been a cause for concern worldwide. E. coli and A. haemolyticus isolated on a number of selective media were screened for virulence factors, antibiotic resistance, and transformation of resistance genes. Out of 69 E. coli isolates obtained, 25 (35.23%), 14 (20.30%), and 28 (40.58%) were positive for Vtx1&2, Vtx1, and Vtx2, respectively, 49 (71.015%) for extendedspectrum beta-lactamases (ESBLs), 34 (49.28%) for serum resistance, 57 (82.61%) for cell surface hydrophobicity, 48 (69.57%) for gelatinase production, and 37 (53.62%) for hemolysin production. For the 14 A. haemolyticus isolates, only 2 (14.29%) in each case from all the samples investigated were positive for Vtx1, Vtx2 and Vtx1&2 respectively, 8 (57.14%) for ESBLs, 7 (50.00%) for serum resistance, 11 (78.57%) for cell surface hydrophobicity, 4 (28.57%) for gelatinase production, and 8 (57.14%) for hemolysin production. Although transformation occurred among the E. coli and Acinetobacter isolates (transformation frequency: $13.3{\times}10^{-7}-53.4^{-7}$), there was poor curing of the plasmid genes, a confirmation of the presence of stable antibiotic-resistant genes (DNA concentration between 42.7 and 123.8 ${\mu}g$) and intragenetic transfer of multidrug-resistant genes among the isolates. The isolates were potentially virulent and contained potentially transferable antibiotic resistance genes. Detection of virulence factors, antibiotic resistance genes, and transformation among these isolates is a very significant outcome that will influence approaches to proactive preventive and control measures and future investigations. However, continued surveillance for drug resistance among these bacteria and further investigation of the mechanism of action of their virulence factors are a necessity.

Water Repellent Finish of Polyester Fabric Using Carbontetrafluoride Plasma Treatment (4불화탄소 플라즈마처리에 의한 폴리에스테르 직물의 발수가공)

  • 모상영;이용운;김태년;천태일
    • Textile Coloration and Finishing
    • /
    • v.6 no.3
    • /
    • pp.27-36
    • /
    • 1994
  • In order to produce a water repellent surface on polyester fabric, samples were treated in the atmosphere of $CF_4$ glow discharge plasma. The samples used in the study were ployester fabric and poyester film. The purpose of film treatment is for the comparison of hydrophobicity with fabric sample at same treatment condition. Radio frequency(13.56MHz) generator was used as electric source and its in put power is 100 Watt. Water repellency was evaluated by contact angle measurement. Result obtained are as follows. 1) Fiber interstice of original fabric was ana lysed as 0.43$\mu$m, and this value was sufficiently ideal for making water repellent fabric. 2) The most favorable setting position of substrate was the center area between two electrodes. 3) Fabric contact angle was higher than film contact angle at same treatment condition, and its difference was more than 50${\circ}$. And it was incapalbe of fabric contact angle measurement when the film contact angle was less than 90${\circ}$. because the fabric is susceptible to absorption of water by the capillary effect. 4) Fabric contact angle can not revealed the precise defferences of surface hydrophobicity, however, the film contact angle showed the real hydrophobic nature. 5) It was not sufficient method to evaluate the hydrophobicity of fabric surface by merely measure of the water contact angle. 6) It showed high water repellent nature at 0.06 torr of $CF_4$ plasma gas pressure and duration of 45 seconds treatment, and it can not be anticipated more improved nature if the pressure and duration of treatment time were increased.

  • PDF

Hydrophillic and Hydrophobic Properties of Sol-Gel Processed Sillica Coating Layers

  • Kim, Eun-Kyeong;Lee, Chul-Sung;Hwang, Tae-Jin;Kim, Sang-Sub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.505-505
    • /
    • 2011
  • The control of wettability of thin films is of great importance and its success surely brings us huge applications such as self-cleaning, antifogging and bio-passive treatments. Usually, the control is accomplished by modifying either surface energy or surface topography of films. In general, hydrophobic surface can be produced by coating low surface energy materials such as fluoropolymer or by increasing surface roughness. In contrast, to enhance the hydrophillicity of solid surfaces, high surface energy and smoothness are required. Silica (SiO2) is environmentally safe, harmless to human body and excellently inert to most chemicals. Also its chemical composition is made up of the most abundant elements on the earth's crest, which means that SiO2 is inherently economical in synthesis. Moreover, modification in chemistry of SiO2 into various inorganic-organic hybrid materials and synthesis of films are easily undertaken with the sol-gel process. The contact angle of water on a flat silica surface on which the Young's equation operates shows ~50o. This is a slightly hydrophilic surface. Many attempts have been made to enhance hydrophilicity of silica surfaces. In recent years, superhydrophilic and antireflective coatings of silica were fabricated from silica nanoparticles and polyelectrolytes via a layer-by-layer assembly and postcalcination treatment. This coating layer has a high transmittance value of 97.1% and a short water spread time to flat of <0.5 s, indicating that both antireflective and superhydrophilic functions were realized on the silica surfaces. In this study, we assessed hydrophillicity and hydrophobicity of silica coating layers that were synthesized using the sol-gel process. Systematic changes of processing parameters greatly influence their surface properties.

  • PDF

Mechanical Strength and Thermal Conductivity of Pure/Opacified Silica Aerogels (순수/불투명화 실리카 에어로겔의 기계적 강도 및 열전도도)

  • 현상훈;이찬호;김동준;성대진
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.969-978
    • /
    • 1997
  • The properties of microstructure, hydrophobicity/hydrophilicity, mechanical strength, and thermal conduction of pure/opacified silica aerogels synthesized by the sol-gel supercritical drying technique were investigated. The hydrophobic surface of opacified silica aerogels doped with carbon (0.13 g/cm3 density, 94% porosity, 580 m2/g specific surface area) transformed to hydrophilic surface after heat-treated above 30$0^{\circ}C$. The values of compressive modulus (1.85 MPa) and strength (0.5 MPa) of opacfied silica aerogels were about 20 times higher than those of pure silica aerogels. The mechanical properties of pure silica aerogels heat-treated at $700^{\circ}C$ were also considerably improved without changing their porosity and density. Particularly, compressive modulus and compressive strength of pure silica aerogels GPSed under 100$0^{\circ}C$ and 80 bar were improved 140 and 37 times, respectively. Thermal conductivities of pure/opacified silica aerogels measured at room temperature and 227$^{\circ}C$ were about 0.013 and 0.019 W/m.K, respectively, and were to be found very low value of 0.004 W/m.K below 10 torr pressure at room temperature.

  • PDF