• Title/Summary/Keyword: surface hydrophobicity

Search Result 419, Processing Time 0.028 seconds

Assessment of Bile Salt Effects on S-Layer Production, slp Gene Expression and, Some Physicochemical Properties of Lactobacillus acidophilus ATCC 4356

  • Khaleghi, M.;Kermanshahi, R. Kasra;Yaghoobi, M.M.;Zarkesh-Esfahani, S.H.;Baghizadeh, A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.749-756
    • /
    • 2010
  • In many conditions, bacterial surface properties are changed as a result of variation in the growth medium and conditions. This study examined the influence of bile salt concentrations (0-0.1%) on colony morphotype, hydrophobicity, $H_2O_2$ concentration, S-layer protein production, and slpA gene expression in Lactobacillus acidophilus ATCC 4356. It was observed that two types of colonies (R and S) were in the control group and the stress condition. When the bile level increased in the medium, the amount of S type was more than the R type. A stepwise increment in the bile concentration resulted in a stepwise decline in the maximum growth rate. The results showed that hydrophobicity was increased in 0.01%-0.02% bile, but it was decreased in 0.1% bile. Treatment by bile (0.01%-0.1%) profoundly decreased $H_2O_2$ formation. S-Layer protein and slpA gene expression were also altered by the stress condition. S-Protein expression was increased in the stress condition. The slpA gene expression increased in 0.01%-0.05% bile and it decreased in 0.1% bile. However, we found that different bile salt concentrations influenced the morphology and some surface properties of L. acidophilus ATCC 4356. These changes were very different in the 0.1% bile. It appears that the bacteria respond abruptly to 0.1% bile.

EFFECT OF ROASTED BARLEY TEA ON THE ADHESIVE PROPERTIES ON SALIVA-COATED HYDROXYAPATITE BEADS OF CARIOGENIC MUTANS STREPTOCOCCI (보리차(Hordeum vulgare var, hexastichon)가 수산화인회석에 대한 우식유발성 세균의 부착에 미치는 영향)

  • Kim, Young-Jae;Kim, Chong-Chul;Kim, Kack-Kyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.4
    • /
    • pp.618-624
    • /
    • 2002
  • Effect of the roasted barley tea in commercial markets on the adherence to the saliva-coated hydroxyapatite(HA) beads and the cell surface hydrophobicity of Streptococcus mutans and Streptococcus sobrinus as cariogenic microorganism was examined in vitro. Adherence activity and hydrophobicity in bacteria tested in all the barley tea samples decreased and the values were different according to the type of tea and the type of treatment. The inhibition of bacterial adsorption to HA beads suggest that barley tea active molecules as catechins and melanoidins may adsorb to a host surface, preventing the tooth receptor from interacting with any bacterial adhesions. The obtained results showed that the barley tea may inhibit bacterial adherence, the first step of the pathogenesis of dental caries in which these microorganism are involved.

  • PDF

The analysis of surface degradation on polymer material by contact angle properties (접촉각 특성을 이용한 고분자복합재료의 표면열화 해석)

  • Park, Jong-Kwan
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.3
    • /
    • pp.8-14
    • /
    • 2002
  • UV, heat, and discharge treatments are arbitrary simulated for finding out the initiations and processes of surface degradation on the polymer surface. Especially, this study is focused on the inter-relation between chemical changes and electrical properties. In contact angle to measure the change of activated degree, that of polymers surface shows a slight hydrophobicity of 73$^{\circ}$~91$^{\circ}$. But, discharge treatment and UV treatment of 300 nm wavelength changed it to the hydrophilic one with the decrease of contact angle, 13.8$^{\circ}$ and 20$^{\circ}$ respectively. Thermal-treatment and UV treatment of 430~500 nm wavelength changed the surface to the hydrophobic one with the increase of contact angle, 90$^{\circ}$ and 80.1$^{\circ}$ respectively.  

Hydrophobic Properties of PTFE Film Deposited on Glass Surface Etched by Ar-plasma (아르곤 플라즈마를 이용하여 유리기판에 증착된 PTFE 박막의 초친수 특성 연구)

  • Rhee, Byung Roh;Bae, Kang;Kim, Hwa-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.516-521
    • /
    • 2014
  • An excellent hydrophobic surface has a high contact angle over 147 degree and the contact angle hysteresis below $5^0$ was produced by using roughness combined with hydrophobic PTFE coatings, which were also confirmed to exhibit an extreme adhesion to glass substrate. To form the rough surface, the glass was etched by Ar-plasma. A very thin PTFE film was coated on the plasma etched glass surface. Roughness factors before or after PTFE coating on the plasma etched glass surface, based on Wensel's model were calculated, which agrees well with the dependence of the contact angle on the roughness factor is predicted by Wensel's model. The PTFE films deposited on glass by using a conventional rf-magnetron sputtering. The glass substrates were etched Ar-plasma prior to the deposition of PTFE. Their hydrophobicities are investigated for application as a anti-fouling coating layer on the screen of displays. It is found that the hydrophobicity of PTFE films mainly depends on the sputtering conditions, such as rf-power, Ar gas content introduced during deposition. These conditions are closely related to the deposition rate or thickness of PTFE film. Thus, it is also found that the deposition rate or the film thickness affects sensitively the geometrical morphology formed on surface of the rf-sputtered PTFE films. In particular, 1,950-nm-thick PTFE films deposited for 30 minute by rf-power 50 watt under Ar gas content of 20 sccm shows a very excellent optical transmittance and a good anti-fouling property and a good durability.

Synthesis of Polymeric Dental Restorative Composite Filled with Hydrophobic Silica Nanoparticle (소수성의 실리카 나노입자가 충진된 치아수복용 고분자 복합체 제조)

  • Han, Sanghyuk;Seo, Kitaek;Ma, Seung Jae;Lim, Sang Myung;Kim, Ohyoung
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.403-408
    • /
    • 2006
  • To enhance the dental properties of polymeric dental restorative composite activated by visible-light, the surface of hydrophilic silica nanoparticle was hydrophobically treated using $\gamma$-methacryloxypropyltrimethoxysilane ($\gamma$-MPS) coupling agent. Structural properties and dispersity of silica in the composite was compared with the hydrophobicity of silica. Polymerization characteristic of the composite was also evaluated. Degree of hydrophobicity of silica nanoparticle was considerably improved with an increase of $\gamma$-MPS upto 40 wt% and converged asymptotically. Additionally, with an increase of the hydrophobicity of silica nanoparticle, the dispersity of silica was improved and the residual monomer in the composite was not detected from nuclear magnetic resonance experiment which indicated superior polymerization behavior.

Interfacial Evaluation and Hydrophobicity of Multifunctional Hybrid Nanocomposites for Self-sensing and Actuation (자체 감지능 및 작동기용 다기능 하이브리드 나노복합재료의 계면 특성 및 소수성 표면 연구)

  • Wang, Zuo-Jia;GnidaKouong, Joel;Jang, Jung-Hoon;Kim, Myung-Soo;Park, Joung-Man
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.24-30
    • /
    • 2010
  • Interfacial evaluation and hydrophobicity of Ni-nanopowder/epoxy composites were investigated for self-sensing and actuation. Contact resistance and resistivity were measured using gradient micro-specimens. The actuation of the composites in the electromagnetic field was studied with three wave functions, i.e., sine, triangle and square functions. Due tothe presence of hydrophobic domains on the heterogeneous surface, the static contact angle of Ni-nanopowder/epoxy nanocomposite wasabout $100^{\circ}$, which was rather lower than that for super-hydrophobicity. The dynamic contact angle showed the similar trend of static contact angle. Ni-nanopowder/epoxy composite was responded wellfor both self-sensing and actuation in electromagnetic field due to the intrinsic metal property of Ni-nanopowder. Displacement of the actuator of Ni-nanopowder/epoxy composite was evaluated to obtain the maximum and the optimum performance using laser displacement sensor as functions of the wave type, frequency, and voltage. Actuation of Ni-nanopowder/epoxy composites also increased as functions of applied frequency and voltage. Actuated strain increased more rapidly at sine wave with increasing voltage compared to those of triangle or rectangular waves.

Partition Coefficient of Proteins of Different Surface Hydrophobicity in Poly (ethylene glycol)-Dextran Aqueous Two Phase System (Poly(ethylene glycol)-Dextran 수용액 2상계에서 단백질들의 소수성에 따른 분획계수)

  • Lee, Sam-Pin;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.140-145
    • /
    • 1987
  • The partition coefficient of the proteins of known effective hydrophobicity was determined in a poly (ethylene glycol)-dextran aqueous two-phase system. The changes in the partition coefficient was also determined when a fraction of PEG-palmitate (PEG-P) was added to the system. The partition coefficient of the proteins increased as the concentrations of PEG and dextran increased at a constant phase volume ration irrespective of the effective hydrophobicity of the proteins. When small amounts of PEG-P were added to the PEG phase, the partition coefficients of BSA and ${\beta}-lactoglobulin$, which had relative hydrophobicity (RI) of 700 and 120, respectively, increased more than ten-fold, whereas ovalbumin whose RI was 5 showed little change. The drastic increases m the partition coefficient were observed by the addition of PEG-P in 2% level to the PEG system. Addition of PEG-P over 5% level resulted in a slight further increase in the partition coefficient of all proteins tested.

  • PDF

Development of nano-and meso- inorganic membrances for the environmental applications

  • Yi, Jong-Heop
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.03a
    • /
    • pp.37-59
    • /
    • 2004
  • Advantages : - Multi-functionality of inorganic surface ㆍMetal chelating ligand $\longrightarrow$ metal recovery .Alkylation $\longrightarrow$ hydrophobicity control - Enhanced stability ㆍThermal, mechanical and chemical stability ㆍSeparation in high temperature and pressure (omitted)

  • PDF

Surface Characterization of Silicone Rubber for Outdoor Insulation by Measurement of Surface Voltage Decay

  • Youn, Bok-Hee;Huh, Chang-Su;Cho, Han-Gu
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.12C no.4
    • /
    • pp.214-219
    • /
    • 2002
  • The influence of ultraviolet (UV) irradiation and corona on the surface degradation of high temperature vulcanized (HTV) silicone rubber used for outdoor insulation through measuring surface voltage decay after corona charging, surface resistivity, contact angle and X-ray photoelectron spectroscopy (XPS) analysis was studied. The surface resistivity calculated by the surface voltage decay was compared with a value directly obtained from the three electrode method having the guard ring electrode. A good agreement between the two methods for surface resistivity was obtained. UV treated specimens showed the slower decrease of surface voltage decay, while the corona exposed specimens showed a dramatically faster decrease. Although both artificial treatments cause the same oxidative products, which was confirmed with XPS, we could distinguish the difference between the reactions of the two treatments by monitoring the surface voltage decay on corona-charged specimen. In addition, we could derive the specific surface states of the silicone rubber treated by accelerated artificial aging factors and the degradation process.