• Title/Summary/Keyword: surface heat flux

Search Result 764, Processing Time 0.032 seconds

A Case Study on the Heat budget of the Marine Atmosphere Boundary Layer due to inflow of cloud on observation at Ulleungdo (울릉도에서 구름 유입시 관측한 해양대기경계층의 열수지에 관한 사례연구)

  • Kim, Hee-Jong;Yoon, Ill-Hee;Kwon, Byung-Hyuk
    • Journal of the Korean earth science society
    • /
    • v.25 no.7
    • /
    • pp.629-636
    • /
    • 2004
  • In order to study developments of the marine atmosphere boundary layer in cloud incoming, important parameters like heat advection, surface layer heat flux, and radiation energy were estimated using the rawinsonde, AWS data, satellite images, and buoy data which was installed at the East Sea. We explained the variation and the development of mixed layer in terms of surface layer heat flux and long wave radiation under the cloudy sky. The heat flux was obtained by means of the bulk method. Conservation of heat was analysed by heat budget equation, which was consist of buoy data in the East sea, and sounding data at Ulleungdo and at Pohang. During the inflow of cloud, radiative cooling at the surface after was suppressed and long wave radiation from cloud played a role of warming. The surface layer temperature was also remained warm by influence of warm advection from south-easterly direction. The air temperature in night was increased, as a result, mixed layer was not destroyed and The nocturnal boundary layer was composed of the mixed layer and the residual layer.

A Study on the Surface Temperature Rise in Spur Gear Part I - Flash Temperature (Spur Gear의 표면온도상승에 관한 연구 Part I - Flash Temperature)

  • 김희진;문석만;김태완;구영필;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.251-257
    • /
    • 2000
  • A numerical simulation of the temperature rise for sliding surface in dry contact is based on Jaeger's formula combined with a calculated heat input. A gear tooth temperature analysis was performed. The pressure distribution has the Hertzian pressure distribution on the heat source. The heat partition factor is calculated along line of action. A Temperature distribution of tooth surface is calculated about before and after profile modification. A Temperature of addendum and deddendum in modified gear have reduced.

  • PDF

The Study for Estimation of the Surface Temperature Rise in Spur Gear Tooth (Spur Gear 치면의 표면상승온도 예측에 관한 연구)

  • 김희진;구영필;조용주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.331-337
    • /
    • 2001
  • A numerical simulation of the temperature rise for sliding surface in dry contact is based on Jaegers formula combined with a calculated heat input. A gear tooth temperature analysis was performed. The pressure distribution has the Hertzian pressure distribution on the heat source. The heat partition factor is calculated along ling of action. A Temperature distribution of tooth surface is calculated about before and after profile modification. A Temperature of addendum and deddendum in modified gear have reduced.

  • PDF

On the Thermal Effect of Vegetation Canopy to the Surface Sublayer Environment (Vegetation Canopy의 접지층 환경에 대한 열적 영향 제2부 : 벼 식피층 관측)

  • 진병화;황수진
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.151-154
    • /
    • 1999
  • To verify the accuracy of the numerical experiment of Part I, measurements at the matured rice canopy located around Junam reservoir were performed at August 14, 1995. According to the measured data, the foliage temperature recorded the highest value, and the ground temperature was the lowest around noon, and these results coincided with those of the numerical experiment using the combined model of Part I. From the estimation using measured data, the maximum value of the latent heat flux was 380$Wm^2$, the highest value among energy balance terms, and the energy redistribution ratio of the latent heat flux was averaged as 0.5, the highest values among redistribution ratios. These results are the same as those of the numerical experiment in tendency, but they reveals a little lower in the absolute values than those from the numerical experiment.

  • PDF

On the Study of the Natural Convection in the Fluid near a Vertical Cylinder Heated with Uniform Heat Flux (일정 열유속으로 가열되는 수직원통 주위의 유체에서의 자연대류에 관한 연구)

  • Lee, C.J.;Kim, S.P.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.426-434
    • /
    • 1988
  • Series expansion is applied to solve the laminar boundary layer equations for the problem of natural convection from vertical cylinder with uniform surface heat flux. The series in terms of transverse curvature parameter ${\xi}$ is extended to five terms and is well converged by applying the Shanks transform twice. In case of natural convection from a vertical cylinder heated with uniform surface heat flux, it is possible to consider the vertical cylinder as vertical plate under the condition of D/L${\geq}$A/$(Gr_L^*)^{1/5}$, where A is in the range of 5.7~55.2. Also, mean Nusselt number ${\overline{Nu_L}}$ can be represented as $C_1(Ra_L^*)^{1/5}$, where $C_1$ is a constant which depends on Pr and is in the range of 0.5~0.8.

  • PDF

A Study on the 2-D Unsteady Flow and Heat Transfer on Turbine Rotor Passage (가스터빈 회전익 채널내 2차원 비정상 유동 및 열전달 특성에 관한 연구)

  • Koo, K.H.;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.428-433
    • /
    • 2000
  • The characteristics of unsteady heat transfer and boundary layer flow in the SSME turbine rotor passage are investigated with LRN $k-{\varepsilon}$ turbulence model. The unsteady flow and heat transfer in a rotor blade passage as a result of wake/blade interaction is modeled by the inviscid/boundary-layer flow approach. The relevant governing equations are discretized to a system of finite different equations by means of a BTBCS implicit method. These equations have been solved numerically, for the velocity and temperature fields using TDMA method. Heat flux on the blade surface and flow parameters in the rotor passage are calculated with wake interaction. Numerical results show that velocity, pressure, turbulent kinetic energy and heat flux on the blade surface are varied periodically by wake passing.

  • PDF

Effect of nanoparticle material for heat transfer enhancement (열전달 향상을 위한 나노물질 코팅재료의 영향에 대한 연구)

  • Jeon, Yong-Han;Kim, Nam-Jin
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.42-47
    • /
    • 2019
  • Nucleate boiling heat transfer is one of the most important phenomenon in the various industries. Especially, critical heat flux (CHF) refers to the upper limit of the pool boiling heat transfer region. Therefore, many researchers have found that CHF can be significantly increased by adding very small amounts of nanoparticles. In this study, the CHF and heat transfer coefficient were tested under the pool boiling state using copper and multi wall carbon nanotube nanoparticles. The results showed that two different types of nanoparticles deposited on the surface of two specimens made of the same material increased the heat flux in the nanoparticles with high conductivity, and there was no difference in the critical heat flux when the same material nanoparticles were deposited on the two different specimen surfaces.

An Experimental Study on Transition and Film Boiling Heat Transfer of Impinging Water Jet (충돌수분류의 천이 및 막비등열전달에 관한 연구)

  • Ohm, Ki-Chan;Seo, Jeong-Yun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.2
    • /
    • pp.87-97
    • /
    • 1985
  • Experimental measurements of the heat flux to a upward impinging water jet on high heated test surface were obtained in the transition and film boiling regimes. Test variables were nozzle outlet velocity, subcooled water temperature and height of supplementary water. Boiling curve of this investigation is similar to a pool boiling curve, but it has one or two cap-shaped peaks in the transition regime. In the film boiling regime, the heat transfer rates are increased along with the increment of nozzle outlet velocity and subcooled temperature. There is optimum height of supplementary water for the augmentation of heat transfer Generalized correlations of boiling heat transfer are presented for maximum heat flux, minimum heat flux and $q_c$ at each supplementary height.

  • PDF

Study on Heat Transfer and Fouling of Flow Boiling Systems using Oxidized Graphene Nanofluid (유동 비등 시스템에서 산화 그래핀 나노유체의 열전달 및 파울링에 대한 연구)

  • Kim, Woo-Joong;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.3
    • /
    • pp.63-74
    • /
    • 2016
  • The nanofluids are the fluids with excellent thermal property, it is expected as a working fluid of the next generation. The nanofluids are well known that if it is used in the boiling heat transfer system, the critical heat flux is enhanced up to 200%, and the thermal conductivity is increased up to from 10 to 160%. However, the fouling phenomenon can be occurred that nanoparticles of nanofluids are deposited on the heat transfer surface. Therefore, to investigate relation between nanofluid and fouling, this study is carried out using oxidized graphene nanofluid. Also it compared and analyzed the critical heat flux and the boiling heat transfer coefficient. As the result, in case of oxidized graphene deposition for fouling, the critical heat flux is increased up to 20% more than oxdized graphene nanofluid. However, the boiling heat transfer coefficient is decreased down to about $6kW/m^2K$ at $1,000kW/m^2$ more than pure water.

The Effect of Nozzle Diameter on Heat Transfer to a Fully Developed Round Impinging Jet (완전 발달된 원형 충돌제트의 노즐 직경이 열전달에 미치는 영향)

  • Lee, Dae-Hee;Won, Se-Youl;Lee, Young-Min;Cho, Heon-No
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.519-525
    • /
    • 2000
  • The effect of nozzle diameter on the local Nusselt number distributions has been investigated for an axisymmetric turbulent jet impinging on the flat plate surface. The flow at the nozzle exit has a fully developed velocity profile. A uniform heat flux boundary condition at the plate surface was created using gold film Intrex. Liquid Crystal was used to measure the plate surface temperature. The experiments were made for the jet Reynolds number (Re) 23,000, the dimensionless nozzle to surface distance (L/d) from 2 to 14, and the nozzle diameter (d) from 1.36 to 3.40 cm. The results show that the Nusselt number at and near the stagnation point increase with an increasing value of the nozzle diameter.