• Title/Summary/Keyword: surface hardening

Search Result 582, Processing Time 0.034 seconds

FE Analysis for Application of Isotropic Steel Sheet on Auto-Roof Panel (등방성 강판의 자동차용 Roof Panel 부품 적용 특성 해석)

  • Han S.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.241-246
    • /
    • 2006
  • The isotropic steel sheet was developed and started to apply on the auto-body outer panel, however the characteristics of application on auto-body were not well known. In this paper the FE analysis of outer panel of auto-body was carried out to investigate the characteristics of isotropic steel sheet. For the FE analysis of the roof panel of ULSAB body the isotropic steel sheet and the bake hardening steel sheet were used. The Isotropic steel sheet shows more deformation at punch bottom area of roof panel than the bake hardening steel sheet that is most required forming properties far outer panel to obtain the shape likability of forming parts. It is shown that the isotropic steel sheet has suitable material properties far outer panels of auto-body.

A study on the wear behavior of spring steel surface-treated by induction hardening method (고주파로 열처리된 스프링강의 마모특성)

  • Kim M.H.;Rhee K.Y.;Paik Y.N.;Oh T.Y.;Hong J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.409-410
    • /
    • 2006
  • In this study, the tempering effect on the wear characteristics of induction-hardened SPS5 steel was investigated. For this purpose, three tempering conditions were applied to control the hardness of heat-treated SPS5 steel. Ball-on-disk wear tests have been performed using zircornia balls on the tempered specimens to determine the variation of wear characteristics. The results showed that friction coefficient decreased with increasing hardness for induction hardening conditions. This seems to occur because real contact area between specimen and mating ball was affected by the specimen hardness.

  • PDF

Strength Properties of Prepacked Polymer Mortar Using MMA-Based Binders (MMA를 이용한 프리팩트 폴리머 모르터의 강도특성)

  • Yeon, Kyu-Seok;Lee, Hyun-Jong;Ryu, Neung-Hwan;Jin, Xing-Qi;Lee, Chi-Won
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.117-122
    • /
    • 2005
  • Prepacked polymer mortar that is mainly composed of MMA monomer and used for the patching and restoring materials of concrete structures was developed, and its hardening and strength properties were experimentally surveyed. Results of study show that the permeance of binder into the aggregate was excellent for the case of PMMA mixing ratio of below 10%, the surface hardening inferiority was not generated for the case of the ratio of over 5%. Working time of the prepacked polymer mortar and hardening shrinkage tended to decrease as the PMMA mixing ratio increased. On the other hand, the ratio turned out not to decisively affect on compressive and flexural strengths. Regardless of PMMA mixing content, the adhesive strength was about 2.5 MPa. Occurring the desquamation on the substrate of cement concrete showed the adhesive strength of MMA prepact polymer mortar was excellent.

  • PDF

Characteristics on Surface Hardening by using of Continuous Wave Nd:YAG Laser of Cold-Work Die Steel(STD11) about Variation of Focal Lens F-number (초점렌즈 F-수 변화에 의한 냉간금형강 STD11 의 연속파 Nd:YAG 레이저 표면경화 특성)

  • Hwang, Chan-Youn;Yang, Yun-Seok;Lee, Ka-Ram;Yoo, Young-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.395-408
    • /
    • 2012
  • An experimental investigation with 2.8kW Nd:YAG laser system was carried out to study the effects of different laser process parameters on the microstructure and hardness of STD11. The optical lens with the elliptical profile are designed to obtain a wide surface hardening area with uniform hardness. The Laser beam is allowed to scan on the surface of the work piece varying the power (1600, 1800 and 1900kW) and traverse speed (200, 400, 600, 800 and 1000mm/min) at three different F-numbers of lens. After laser surface treatment three zones, In the microstructure have been observed : melted zone(decarburization), heat affected zone(martensite), and the substrate.

Fracture and Residual Stresses in $Metal/Al_2O_3-SiO_2$ System

  • Soh, D.;Korobova, N.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.308-312
    • /
    • 2003
  • The packaging of the integrated circuits requires knowledge of ceramics and metals to accommodate the fabrication of modules that are used to construct subsystems and entire systems from extremely small components. Composite ceramics ($Al_2O_3-SiO_2$) were tested for substrates. A stress analysis was conducted for a linear work-hardening metal cylinder embedded in an infinite ceramic matrix. The bond between the metal and ceramic was established at high temperature and stresses developed during cooling to room temperature. The calculations showed that the stresses depend on the mismatch in thermal expansion, the elastic properties, and the yield strength and work hardening rate of the metal. Experimental measurements of the surface stresses have also been made on a $Cu/Al_2O_3-SiO_2$ ceramic system, using an indentation technique. A comparison revealed that the calculated stresses were appreciably larger than the measured surface stresses, indicating an important difference between the bulk and surface residual stresses. However, it was also shown that porosity in the metal could plastically expand and permit substantial dilatational relaxation of the residual stresses. Conversely it was noted that pore clusters were capable of initiating ductile rupture, by means of a plastic instability, in the presence of appreciable tri-axiality. The role of ceramics for packaging of microelectronics will continue to be extremely challenging.

  • PDF

Surface and Tribological Characteristics of Air-cooled and Oil-cooled AISI 4140 Steel (냉각공정에 따른 AISI 4140 강의 표면 및 트라이볼로지 특성)

  • Cho, Hak-Rae;Lee, Sang Don;Son, Jung Ho;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.32 no.5
    • /
    • pp.160-165
    • /
    • 2016
  • AISI 4140 steel is widely used in various mechanical components owing to its superior mechanical properties. Surface hardening techniques are often used to further improve the properties, particularly for applications with moving components. The aim of this research is to understand the effect of heat treatment process on surface properties and tribological characteristics of AISI 4140 steel. In this work, we prepare two different AISI 4140 steel specimens- one cooled by air and one by oil- and determine surface properties such as surface topography and roughness using a confocal microscope. We also observe the cross-sections of the specimens using a scanning electron microscope to understand the difference in the material structure. In addition, we assess the hardness with respect to the distance from the surface using a micro-Vickers hardness tester. After characterizing the surfaces of the specimens, we investigate the wear characteristics of the specimens under hydrodynamic lubrication. The results show the presence of grooves on the surface of the oil-cooled specimens. It is likely that such grooves are formed during the cooling process using the oil. However, we observe no other significant differences in the surface properties of the specimens. The wear test results show the occurrence of severe wear on the oil-cooled specimens, which may be due to the groove formed on the surface. The results of this work may be helpful to improve surface properties using surface hardening techniques from a tribological perspective.

A Study on Mechanical Property of SM53C Steel by High Frequency Induction Hardening (고주파열처리 SM53C강의 기계적 성질에 관한 연구)

  • Kim, Hwang-Soo;Kim, Jung-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.7-15
    • /
    • 2010
  • Recently, with the high performance and efficiency of machine, there have been required the multi-functions in various machine parts, such as the heat resistance, the abrasion resistance and the stress resistance as well as the strength. Fatigue crack growth tests were carried out to investigate the fatigue characteristics of high carbon steel (SM53C) experienced by high-frequency induction treatment. The Cam nose part of the Automobile's Cam shaft is strongly bumped with rocker arm or valve-lift. Therefore abnormal wear such as unfair wear and early wear occur in the surface. This abnormal wear causes a defect that bad timing open and close actions of the engine valve happen in the combustion chamber so the fuel gas will be combustion imperfect. Therefore, the cam shaft demands high hardness and wear resistance. In this study, high frequency heat treatment has been accomplished while wear test for material SM53C.

Development of New Titanium Alloys for Castings (주조용 티타늄 신합금 개발)

  • Kim, Seung-Eon;Jeong, Hui-Won;Hyeon, Yong-Taek;Kim, Seong-Jun;Lee, Yong-Tae
    • 연구논문집
    • /
    • s.29
    • /
    • pp.163-171
    • /
    • 1999
  • A new titanium alloy system. Ti-xFe-ySi (x,y=0-4 wt%). was designed and characterized with the point at low cost and high strength for casting applications. Fe improved room and elevated temperature mechanical properties owing to solid solution hardening and beta phase stabilization. Si yielded titanium silicides and Si addition over 1 wt% resulted in poor ductility due to coarse silicide chains at prior beta boundaries. The optimum composition was found to be Ti-4Fe-(0.5-1)Si in the viewpoint of tensile strength and ductility which are comparable to the Ti-6Al-4V. The metal-mould reaction was also examined for Ti-xFe and Ti-xSi binary alloy system. The thickness of surface reaction layer w as not affected significantly with Fe content, while it was decreased with Si content. In the Ti-4Si alloy, no reaction layer was found. The depth of surface hardening layer was about $200\mum$ regardless of the mould materials.

  • PDF

Preparation and Evaluation of Gelatin-Acacia Microcapsules of Sulfamethoxazole

  • Yoo, Bong-Gyu;Lee, Min-Hwa
    • Journal of Pharmaceutical Investigation
    • /
    • v.12 no.4
    • /
    • pp.112-125
    • /
    • 1982
  • Sulfamethoxazole particles were microencapsulated using the gelatin-acacia complex coacervation method. Micromeritic properties and dissolution characteristics of the microcapsules were studied. The particle size distribution followed log-normal form. As the hardening time increased, the particle size and wall thickness increased ($45.3-52.0\;{\mu}m$, $2.02-5.12\;{\mu}m$, respectively). This is considered to be due to the cross-linked wall structure of formalized microcapsules which prevents shrinking of gelatin during the dehydration and drying processes. An increase of hardening time clearly delayed the release rate. The in vitro 50% dissolution time $(t_{50})$ for unencapsulated sulfamethoxazole powder was less than 3 min.; for microcapsules hardened for 30 min, the $t_{50}$ was 20.1 min.; for those hardened for 60 min. the $t_{50}$ was 25.0 min.; for those hardened for 120 min., the $t_{50}$ was 35.8 min. The surface of the unhardened microcapsules was smooth and had no cracking or pore penetration. However, the surface of the hardened microcapsules was folded and invaginated.

  • PDF

Prediction for Stress-Strain Behavior of Remolded Clay using Single Surface Constitutive Model (Single Surface 구성모델을 이용한 재성형 점토의 응력-변형률 거동 예측)

  • 이강일
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.3
    • /
    • pp.97-106
    • /
    • 2000
  • The study is closely relevant to Lade's single work hardening model. This model has been shown to have good applicability to cohesive soils. However the validation of this model on the clayey soils has not been satisfactorily reported. To scrutinize the applicability of this model on clayey foundation the laboratory tests for Kwangyang clayey soils were performed using the improved cubical triaxial test apparatus designed originally by Lade. A computer program was developed by which soil parameters for the single work-hardening model can be rationally determined by deleting some dispersed test data generated usually at the initial stage of laboratory tests. And using the program numerical analysis of the cubical clayey specimens using intermediate principal stress was carried out and a good agreement between observed values and numerical results was found.

  • PDF