• Title/Summary/Keyword: surface forces

Search Result 1,168, Processing Time 0.026 seconds

South Korea's strategy to cope with local provocations by nuclear armed North Korea (핵위협하 국지도발 대비 대응전략 발전방향)

  • Kim, Tae-Woo
    • Strategy21
    • /
    • s.31
    • /
    • pp.57-84
    • /
    • 2013
  • North Korea's continuous threats and provocative behaviors have aggravated tension on the Korean peninsula particularly with the recent nuclear weapons test. South Korea's best way to cope with this situation is to maintain the balance among three policy directions: dialogue, sanctions, and deterrence. Among the three, I argue that deterrence should be prioritized. There are different sources of deterrence such as military power, economic power, and diplomatic clouts. States can build deterrence capability independently. Alternatively, they may do so through relations with other states including alliances, bilateral relations, or multilateral relations in the international community. What South Korea needs most urgently is to maintain deterrence against North Korea's local provocations through the enhancement of independent military capability particularly by addressing the asymmetric vulnerability between militaries of the South and the North. Most of all, the South Korean government should recognize the seriousness of the negative consequences that North Korea's 'Nuclear shadow strategy' would bring about for the inter-Korea relations and security situations in Northeast Asia. Based on this understanding, it should develop an 'assertive deterrence strategy' that emphasizes 'multi-purpose, multi-stage, and tailored deterrence whose main idea lies in punitive retaliation.' This deterrence strategy requires a flexible targeting policy and a variety of retaliatory measures capable of taking out all targets in North Korea. At the same time, the force structures of the army, the air force, and the navy should be improved in a way that maximizes their deterrence capability. For example, the army should work on expanding the guided missile command and the special forces command and reforming the reserve forces. The navy and the air force should increase striking capabilities including air-to-ground, ship-to-ground, and submarine-to-ground strikes to a great extent. The marine corps can enhance its deterrence capability by changing the force structure from the stationary defense-oriented one that would have to suffer some degree of troop attrition at the early stage of hostilities to the one that focuses on 'counteroffensive landing operations.' The government should continue efforts for defense reform in order to obtain these capabilities while building the 'Korean-style triad system' that consists of advanced air, ground, and surface/ subsurface weapon systems. Besides these measures, South Korea should start to acquire a minimum level of nuclear potential within the legal boundary that the international law defines. For this, South Korea should withdraw from the Nuclear Non-proliferation Treaty. Moreover, it should obtain the right to process and enrich uranium through changing the U.S.-South Korea nuclear cooperation treaty. Whether or not we should be armed with nuclear weapons should not be understood in terms of "all or nothing." We should consider an 'in-between' option as the Japanese case proves. With regard to the wartime OPCON transition, we need to re-consider the timing of the transition as an effort to demonstrate the costliness of North Korea's provocative behaviors. If impossible, South Korea should take measures to make the Strategic Alliance 2015 serve as a persisting deterrence system against North Korea. As the last point, all the following governments of South Korea should keep in mind that continuing reconciliatory efforts should always be pursued along with other security policies toward North Korea.

  • PDF

The Study of Plantar Foot Pressure Distribution during Obstacle Crossing with Different Height in Normal Young Adults (보행 시 장애물 높이에 따른 정상 성인의 족저압 분포 연구)

  • Han, Jin-Tae;Lee, Myung-Hee;Kim, Kyoung
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • The purpose of this study was to investigate the effect of different obstacle heights on the plantar foot pressure during obstacle crossing. Sixteen healthy adults who had no musculoskeletal disorders were instructed to perform unobstructed level walking and to step over obstacles corto 10cm, 20cm, 30cm. Plantar foot forces and pressures were recorded by the Footmat system(Tekscan, Boston, USA) during level and obstacle walking with barefoot. Plantar foot surface was defined as seven regions for pressure measurement; two toe regions, three forefoot regions, one midfoot region, one heel region. One-way ANOVA was used to compare each region data of foot according to various heights. The results indicated that there are significant differences on peak pressure and maximal forces regarding each region at stance phase. As height of obstacle became high, the pathway of COP had a tendency to be short and abducted. Plantar pressure of foot could be changed by obstacle height and these findings demonstrated that obstacle with different height have an effect on structure and function of the foot.

Structural Response Analysis of a Tension Leg Platform in Multi-directional Irregular Waves (다방향 불규칙파중의 인장계류식 해양구조물의 구조응답 해석)

  • Lee, Soo-Lyong;Suh, Kyu-Youl;Lee, Chang-Ho
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.675-681
    • /
    • 2007
  • A numerical procedure is described for estimating the effects of the multi-directional irregular waves on the structural responses of the Tension Leg Platform (TLP). The numerical approach is based on a three dimensional source distribution method for hydrodynamic forces, a three dimensional frame analysis method for structural responses, in which the superstructure of TLP is assumed to be flexible instead of rigid. Hydrodynamic and hydrostatic forces on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in structural analysis. The spectral description used in spectral analysis of directional waves for the linear system of a TLP in the frequency domain is sufficient to completely define the structural responses. This is due to both the wave inputs and responses are stationary Gaussian random process of which the statistical properties in the amplitude domain are well known. The numerical results for the linear motion responses and tension variations in regular waves are compared with the experimental and numerical ones, which are obtained in Yoshida et al.(1983). The results of comparison confirmed the validity of the proposed approach.

Simulation of Solid Particle Sedimentation by Using Moving Particle Semi-implicit Method (고체 입자형 MPS법을 이용한 토사물 퇴적 시뮬레이션)

  • Kim, Kyung Sung;Yu, Sunjin;Ahn, Il-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.1
    • /
    • pp.119-125
    • /
    • 2018
  • The particle based computational fluid dynamics (CFD) method, which follow Lagrangian approach for fluid dynamics, fluid particle behavior by tracking all particle calculation physical quantities of each particle. According to basic concept of particle based CFD method, it is difficult to satisfy continuum theory and measure influences from neighboring particle. Article number density and weight function were used to solve aforementioned issue. Difficulties continuum mean simulate non-continuum particles such as solid including granular and sand. In this regard, the particle based CFD method modified solid particle problems by replacing viscous and surface tension forces friction and drag forces. In this paper, particle interaction model for solid particle friction model implemented to simulate solid particle problems. The broken dam problem, which is common to verify particle based CFD method, used fluid or solid particles. The angle of repose was observed in the simulation results the solid particle not fluid particle.

Initial Stiffness of Beam Column Joints of PCS Structural Systems (PCS 구조 시스템 접합부의 초기 강성에 대한 연구)

  • Park, Soon-Kyu;Kim, Moo-Kyung
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.271-282
    • /
    • 2008
  • Specific joint devices composed of end-plates and through bolts are under development to assemble steel beams to PC columns efficiently by dry construction method for the PCS structural system, of which major structural components are precast concrete columns and steel beams. Seismic performance of the joint devices had been evaluated by experimental tests in the previous studies and it was showed that all the performance requirements regarding to strength deterioration, stiffness degradation and energy dissipation capacity were satisfied to the criteria of ACI requirements, but the initial stiffness was not. In order to find out possible causes of the insufficient rigidity of the joint devices and provide the proper measures to improve the performance of the joint accordingly, numerical analyses were carried out by using ABAQUS. Parameters, such as thickness of neoprene pad, conditions of surface between PC column and end-plate, magnitude of pretension forces of through bolts, stiffness of end-plate were taken into consideration. As the result, it was found that the rigidity of the PCS system was negatively affected by the magnitude of initial gaps between PC columns and end-plates, and insufficient stiffness of neoprene fillers and end plates. In order to improve the initial stiffness performance of the joints, measures such as increase of the magnitude of pretension forces on through bolts and increase of the stiffness of end-plate by reducing the bolt pitch and providing adequate stiffeners are recommended.

AN ANALYSIS OF STRESS DISTRIBUTION AROUND THE IMPLANT ACCORDING TO THE BONE QUALITY AND BITE FORCE: FINITE ELEMENT METHOD (저작압이 임프란트 주위골 내 응력분포에 미치는 영향에 관한 연구)

  • Hyun Ki-Bong;Lee Sun-Hyung;Chang Ik-Tae;Yang Jae-Ho;Shin Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.4
    • /
    • pp.391-409
    • /
    • 2001
  • Since the early study about the osseointegration, lots of researches have been performed to increase the success rate and the stress around the implant in the jaw bone has been considered as one of the causes of failure. The purpose of this study was to examine the relationship between the implant failure and the stress by analysing the influence of different bone quality and bite force of some foods on the stress distribution around the implant, and to estimate the treatment result according to the bone quality and dietary pattern of patients. Bone quality was divided in 4 groups and models were drawn with the assumption that thread type implant(Nobel Biocare AB, Goteborg, Sweden) of 3.75mm diameter, 13mm length was installed to the bones. Various bite forces were applied to the occlusal surface of superstructure and the stress distributed around the implant were analysed with finite element analysis program. The results were as follows ; 1. The stress was changed proportionally to the bite forces of foods at all measuring points in all load cases. 2. The stress at the marginal bone was higher than that of the other measuring points in all load cases, and it was decreased at the first thread area. 3. The stress at the marginal bone was highest in type IV bone in all load cases. Especially it was twice those of other bone types at the bucco-lingual marginal bone and 50% higher at the mesio-distal marginal bone. 4. The stress at the bucco-lingual sides of the bone around the apical portions of implant showed little differences among the bone types, while type IV bone showed lower stress concentration than the other bone types in the mesio-distal sides. 5. Under the buccal oblique load ($15^{\circ}$ ), the stress at the lingual marginal bone was higher than that of buccal marginal bone, and the difference between the two points was almost same regardless of bone types.

  • PDF

Simulation of Explosion of the Semi-Fluid with Strong Elasticity Applying Coulomb-Mohr Theory (쿨롱-모어 이론을 이용한 강탄성 반유동체 폭발 시뮬레이션)

  • Kim, Gyeong-Su;Sung, Su-Kyung;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.15 no.5
    • /
    • pp.143-152
    • /
    • 2015
  • Unlike simulating general 'particle-based fluid explosion', simulating fluid with elasticity requires various experimental methods in order to show the realistic deformation of the matter. The existing studies on particle-based viscoelastic fluid only focused on matters' plastic deformation which can be found in mud or paint, based on the maximum distortion energy theory and maximum shear stress theory. However, these former researches could not simulate the brittle deformation which can be seen from silicon or highly elastic rubber when great external forces above limits are applied. This study suggests a brittle simulation method based on the Coulomb-Mohr theory, the idea that a yield occurs when maximum stress on a matter reaches to its rupture stress. This theory has a significant difference from the existing particle-based simulations which measures the forces on a matter by length or volume. Using a strong-elastic semifluid which Coulomb-Mohr theory is applied, realistic deformation process of a matter was observed as its forced surface reached to the rupture stress. When semifluid hit the ground, the impact of deformation can be explained by using Coulomb-Mohr theory.

Development of Kill Chain Based Effective Maritime Operations Model for Naval Task Forces (Kill Chain 기반 해상기동부대의 효과적인 해상작전 모델 제안)

  • Lee, Chul-Hwa;Jang, Dong-Mo;Lee, Tae-Gong;Lim, Jae-Sung
    • Journal of Information Technology and Architecture
    • /
    • v.9 no.2
    • /
    • pp.177-186
    • /
    • 2012
  • Navy establishes the Naval Task Forces (TF) for many kinds of maritime operations. Then the TF in the maritime environment performs simultaneous component operations such as ASUW (Anti-Surface Warfare), ASW (Anti-Submarine Warfare), AAW (Anti-Aircraft Warfare), and assault operations. The TF consists of many tactical systems for the completion of missions C4I, VOIP (Voice Over Internet Protocol), DMHS (Digital Massage Handling System), and TDLs (Tactical Data Links) such as LINK-11, 16, ISDL (Inter Site Data Link). When the TF executes naval operations to complete a mission, we are interested in the kill chain for the maritime operations in the TF. The kill chain is a standard procedure for the naval operations to crush enemy defenses. Although each ship has a procedure about a manual for 'how to fight', it leave something to be desired for the TF detailed kill chain currently. Therefore, in this paper, we propose the naval TF's kill chain to perform the naval operations. Then, the operational effectiveness of the TF in the kill chain environment is determined through operation scenarios of TDL system implementation. It is to see the operational information sharing effect to a data link model based on MND-AF OV 6c (statement of tracking operational status) in the maritime operations applied to TDL and is to identify improvements in information dissemination process. We made the kill chain of maritime TF for the effective naval operations.

Study on the stress distribution depending on the bone type and implant abutment connection by finite element analysis (지대주 연결 형태와 골질에 따른 저작압이 임프란트 주위골내 응력분포에 미치는 영향)

  • Park, Hyun-Soo;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.531-554
    • /
    • 2006
  • Oral implants must fulfill certain criteria arising from special demands of function, which include biocompatibility, adequate mechanical strength, optimum soft and hard tissue integration, and transmission of functional forces to bone within physiological limits. And one of the critical elements influencing the long-term uncompromise functioning of oral implants is load distribution at the implant- bone interface, Factors that affect the load transfer at the bone-implant interface include the type of loading, material properties of the implant and prosthesis, implant geometry, surface structure, quality and quantity of the surrounding bone, and nature of the bone-implant interface. To understand the biomechanical behavior of dental implants, validation of stress and strain measurements is required. The finite element analysis (FEA) has been applied to the dental implant field to predict stress distribution patterns in the implant-bone interface by comparison of various implant designs. This method offers the advantage of solving complex structural problems by dividing them into smaller and simpler interrelated sections by using mathematical techniques. The purpose of this study was to evaluate the stresses induced around the implants in bone using FEA, A 3D FEA computer software (SOLIDWORKS 2004, DASSO SYSTEM, France) was used for the analysis of clinical simulations. Two types (external and internal) of implants of 4.1 mm diameter, 12.0 mm length were buried in 4 types of bone modeled. Vertical and oblique forces of lOON were applied on the center of the abutment, and the values of von Mises equivalent stress at the implant-bone interface were computed. The results showed that von Mises stresses at the marginal. bone were higher under oblique load than under vertical load, and the stresses were higher at the lingual marginal bone than at the buccal marginal bone under oblique load. Under vertical and oblique load, the stress in type I, II, III bone was found to be the highest at the marginal bone and the lowest at the bone around apical portions of implant. Higher stresses occurred at the top of the crestal region and lower stresses occurred near the tip of the implant with greater thickness of the cortical shell while high stresses surrounded the fixture apex for type N. The stresses in the crestal region were higher in Model 2 than in Model 1, the stresses near the tip of the implant were higher in Model 1 than Model 2, and Model 2 showed more effective stress distribution than Model.

Numerical Analysis of Wave Transformation of Bore in 2-Dimensional Water Channel and Resultant Wave Loads Acting on 2-Dimensional Vertical Structure (2차원수조내에서 단파의 변형과 구조물에 작용하는 단파파력에 관한 수치해석)

  • Lee, Kwang Ho;Kim, Chang Hoon;Kim, Do Sam;Hwang, Young Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.473-482
    • /
    • 2009
  • This study numerically discusses wave forces acting on a vertical wall such as breakwaters or revetments, subjected to incident undular or turbulent bores. Due to the complex hydrodynamics of bore, its wave forces have been predicted, mainly through laboratory experiments. Numerical simulations in this paper were carried out by CADMAS-SURF(CDIT, 2001), which is based on Navier-Stokes momentum equations and VOF method (Hirt and Nichols, 1981) for tracking free water surface. Its original source code was also partly revised to generate bore in the numerical water channel. Numerical raw data computed by CADMAS-SURF included great strong spike phenomena that show the abrupt jumps of wave loads. To resolve this undesired noise of raw data, the band-pass filter with the frequency of 5Hz was utilized. The filtered results showed reasonable agreements with the experimental results performed by Matsutomi (1991) and Ramsden (1996). It was confirmed that CADMASSURF can be applied to the design of coastal structures against tsunami bores. In addition, the transformation process and propagation speed of bores in the same 2-d water channel were discussed by the variations of water level for time and space. The numerical results indicated that the propagation speed of bore was changed due to the nonlinear interactions between negative and reflected waves.