• Title/Summary/Keyword: surface forces

Search Result 1,168, Processing Time 0.031 seconds

Simulation of Dynamic Characteristics of Agricultural Tractor(I) - Development of 3 Dimensional Dynamic Tractor-Trailer Model - (농용 트랙터의 동특성 시뮬레이션(I) - 3차원 동적 트랙터 -트레일러 모델 개발 -)

  • 박홍제;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.22 no.4
    • /
    • pp.421-432
    • /
    • 1997
  • This study was conducted to investigate dynamic characteristics of agricultural tractor with a particular interest in ride vibrations when it is subjected to various excitation forces. As the first part of it this paper describes development of dynamic model of a tractor-trailer system and its equations of motions. An 3 dimensional 16-degree-of-freedom dynamic model for a tractor-trailer system was developed and its equations of motions were derived, which will be used to investigate the effects of irregular ground surface and excitation forces due to the engine mounted on the tractor. And the excitation forces were also formulated analytically. The transition matrix method and QR algorithm were proposed for numerical solution of the equation of motions fur the developed model. The later parts of the study will include a proof of the model and optimization from which tractors can be designed to minimize the ride vibrations. This will be presented in the second and third papers to be followed shortly.

  • PDF

Estimation of cutting forces in band sawing (톱절삭에서의 절삭력 예측)

  • Jung, Hoon;Baek, Dae-Kyun;Ko, Tae-Jo;Kim, Hee-Sool
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.31-35
    • /
    • 1996
  • The cross section of the circular rod type workpiece to be cut in the band saw machine is variable at every moment in the sawing process. When the cutting feed rate is fixed to the constant speed, the cutting edges of the band saw teeth are also variabl eat any moment, so this causes the wear of the land saw teeth and the deterioration of the quality in the surface roughness. In this study, to work out this kind of problem basically, the mean cutting force of a tooth in the band saw was estimated by using the workpiece which was smaller than the interval of each tooth, i.e. band saw pitch, in the thickness. Then the static cutting forces were predicted by appling the mean cutting forces referred above to the mechanistic cutting force model which were analyzed through the geometric profile of a band saw tooth.

  • PDF

Cutting Force Variation Characteristics in End Milling of Terrace Volume (계단형상 체적의 엔드밀 가공시 절삭력 변화 특성에 관한 연구)

  • Maeng, Heeyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.489-495
    • /
    • 2013
  • This study analyzed thevariation in the cutting force when the cutting area of a terrace volume is machined, which is generally left after the rough cutting of a sculptured surface. The numerically simulated results for the cutting forces are compared with cutting force measurements by considering the theoretical prediction of the cutting area formation and specific cutting volume. The variation in the cutting force is measured using a dynamometer installed on a machining center for 19 different kinds of test pieces, which are selected according to the variation in the terrace volume factor, tool diameter factor, and cutting depth factor. As a result, it is verified that the cutting forces evaluated by the numerical analysis coincide with the measured cutting forces, and it is proposed as a practical cutting force prediction model.

An estimation of static aerodynamic forces of box girders using computational fluid dynamics

  • Watanabe, Shigeru;Inoue, Hiroo;Fumoto, Koichiro
    • Wind and Structures
    • /
    • v.7 no.1
    • /
    • pp.29-40
    • /
    • 2004
  • This study has focused on aerodynamics for a wind-resistance design about the single and tandem box girder sections to realize a super-long span bridge in the near future. Three-dimensional static analysis of flows around the fundamental single and tandem box girder sections with fairing is carried out by means of the IBTD/FS finite element technique with LES turbulence model. As the results of the analysis, computations have verified aerodynamic characteristics of both sections by the histories of aerodynamic forces, the separation and reattachment flow patterns and the surface pressure distributions. The relationship between the section shapes and the aerodynamic characteristics is also investigated in both sections. And the mechanism about the generation of fluctuating aerodynamic forces is discussed.

The Added Mass and Damping Coefficients of and the Excitation Forces on Four Axisymmetric Ocean Platforms

  • Kwang-June,Bai
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.2
    • /
    • pp.27-36
    • /
    • 1983
  • This paper presents numerical results of the added mass and damping coefficients of vertical axisymmetric bodies on or under the free surface. Also computed are the excitation forces on these bodies due to an incident regular wave system. The numerical scheme employs a localized finite-element method, which is based on the theory of the calculus of variations. The excitation forces and moments on a submerged half-spheroid lying on the bottom are computed and compared with the results obtained by others. he agreement is good. Several specific types of floating vertical axisymmetric platforms are considered for ten different wave lengths, in connection with the design of an ocean-thermal-energy converter platform. The added mass and damping coefficient, as well as the excitations, are presented. It is shown that simple strip theory gives a good approximation of the sway(and pitch) added mass for a disc platform having a long circular cylinder.

  • PDF

On the non-linearities of ship's restoring and the Froude-Krylov wave load part

  • Matusiak, Jerzy Edward
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.111-115
    • /
    • 2011
  • When formulating a general, non-linear mathematical model of ship dynamics in waves the hydrostatic forces and moments along with the Froude-Krylov part of wave load are usually concerned. Normally radiation and the diffraction forces are regarded as linear ones. The paper discusses briefly few approaches, which can be used in this respect. The concerned models attempt to model the non-linearities of the surface waves; both regular and the irregular ones, and the nonlinearities of the restoring forces and moments. The approach selected in the Laidyn method, which is meant for the evaluation of large amplitude motions in the 6 degrees-of-freedom, is presented in a bigger detail. The workability of the method is illustrated with the simulation of ship motions in irregular stern quartering waves.

Sensitivity of resistance forces to localized geometrical imperfections in movement of drill strings in inclined bore-holes

  • Gulyayev, V.I.;Khudoliy, S.N.;Andrusenko, E.N.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.1
    • /
    • pp.1-16
    • /
    • 2011
  • The inverse problem about the theoretical analysis of a drill string bending in a channel of an inclined bore-hole with localized geometrical imperfections is studied. The system of ordinary differential equations is first derived based on the theory of curvilinear flexible elastic rods. One can then use these equations to investigate the quasi-static effects of the drill string bending that may occur in the process of raising, lowering and rotation of the string inside the bore-hole. The method for numerical solution of the constructed equations is described. With the proposed method, the phenomenon of the drill column movement, its contact interaction with the bore-hole surface, and the frictional seizure can be simulated for different combinations of velocities, directions of rotation and axial motion of the string. Geometrical imperfections in the shape of localized smoothed breaks of the bore-hole axis line are considered. Some numerical examples are presented to illustrate the applicability of the method proposed.

A study on the surface model and normal and tangential forces for power transmission flat belts (동력전달용 평벨트의 표면모델과 수직력 및 접선력에 대한 연구)

  • 김현수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.772-780
    • /
    • 1987
  • The normal and tangential belt forces for two types of flat belts are measured and compared. From friction theory, ti was assumed that tangential friction is proportional to the actual contact area $A_{a}$ and $A_{a}$ is proportional to normal pressure P; i.e., $A_{a}$ .var.P$^{n}$ . For a flat belt with cloth backing, the n=2/3 is obtained for the constant of belt surface model. For a flat belt with rubber backing, the n=0.9 to n=1.0 is suggested as a surface model constant. The theoretical equation developed in this paper showed agood with the experimental results.

Dynamic behaviour of high-sided road vehicles subject to a sudden crosswind gust

  • Xu, Y.L.;Guo, W.H.
    • Wind and Structures
    • /
    • v.6 no.5
    • /
    • pp.325-346
    • /
    • 2003
  • High-sided road vehicles are susceptible to a sharp-edged crosswind gust, which may cause vehicle accidents such as overturning, excessive sideslip, or exaggerated rotation. This paper thus investigates the dynamic behaviour and possible accidents of high-sided road vehicles entering a sharp-edged crosswind gust with road surface roughness and vehicle suspension included. The high-sided road vehicle is modelled as a combination of several rigid bodies connected by a series of springs and dampers in both vertical and lateral directions. The random roughness of road surface is generated from power spectral density functions for various road conditions. The empirical formulae derived from wind tunnel test results are employed to determine aerodynamic forces and moments acting on the vehicle. After the governing equations of motion are established, an extensive computation work is performed to examine the effects of road surface roughness and vehicle suspension on the dynamic behaviour and vehicle accidents. It is demonstrated that for the high-sided road vehicle and wind forces specified in the computation, the accident vehicle speed of the road vehicle running on the road of average condition is relatively smaller than that running on the road of very good condition for a given crosswind gust. The vehicle suspension system should be taken into consideration, and the accident vehicle speed becomes smaller if the vehicle suspension system has softer springs and lighter dampers.

Optimal Cutting Condition in Side Wall Milling Considering Form Accuracy (측벽 엔드밀 가공에서 형상 정밀도를 고려한 최적 절삭 조건)

  • 류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.31-40
    • /
    • 2003
  • In this paper, optimal cutting condition to minimize the form error in side wall machining with a flat end mill is studied. Cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting such as roughing. Using the form error prediction method from tool deflection, optimal cutting condition considering form accuracy is investigated. Also, the effects of tool teeth number, tool geometry and cutting conditions on form error are analyzed. The characteristics and the difference of generated surface shape in up and down milling are discussed and over-cut free condition in up milling is presented. Form error reduction method through successive up and down milling is also suggested. The effectiveness and usefulness of the presented method are verified from a series of cutting experiments under various cutting conditions. It is confirmed that form error prediction from tool deflection in side wall machining can be used in optimal cutting condition selection and real time surface error simulation for CAD/CAM systems. This study also contributes to cutting process optimization for the improvement of form accuracy especially in precision die and mold manufacturing.