• Title/Summary/Keyword: surface forces

Search Result 1,164, Processing Time 0.026 seconds

Molecular Theory of Plastic Deformation (I). Theory (소성변형의 분자론 (제1보). 이론)

  • Kim Chang Hong;Ree Taikyue
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.330-338
    • /
    • 1977
  • In order to elucidate the plastic deformation of solids, the following assumptions were made: (1) the plastic deformation of solids is classified into two main types, the one which is caused by dislocation movement and the other caused by grain boundary movement, each movement being restricted on a different shear surface, (2) the dislocation movement is expressed by a mechanical model of a parallel connection of various kinds of Maxwell dislocation flow units whereas the grain boundary movement is also expressed by a parallel connection of various kinds of Maxwell grain boundary flow units; the parallel connection in each type of movements indicates that all the flow units on each shear surface flow with the same shear rate, (3) the latter model for grain boundary movement is connected in series to the former for dislocation movement, this means physically that the applied stress distributes homogeneously in the flow system while the total strain rate distributes heterogeneously on the two types of shear planes (dislocation or grain boundary shear plane), (4) the movement of dislocation flow units and grain boundary units becomes possible when the atoms or molecules near the obstacles, which hinder the movement of flow units, diffuse away from the obstacles.Using the above assumptions in conjunction with the theory of rate processes, generalized equations of shear stress and shear rate for plastic deformation were derived. In this paper, four cases important in practice were considered.ted N${\cdot}{\cdot}{\cdot}$O hydrogen bond and the second of two normal N${\cdot}{\cdot}{\cdot}$O hydrogen bonds, both of which exist between the amino group and the perchlorate, groups. A p-phenylenediamine group is approximately planar within an experimental error and bonded to twelve perchlorates: ten perchlorates forming hydrogen bonds and two being contacted with the van der Waals forces. A perchlorate group is surrounded by six p-phenylenediamines and four perchlorates; among the six p-phenylenediamines, five of them are hydrogen-bonded, and the rest contacted with the van der Waals force.

  • PDF

A Quasi-nonlinear Numerical Analysis Considering the Variable Membrane Tension of Vertical Membrane Breakwaters (연직 막체방파제의 변동 막체장력을 고려한 준 비선형 수치해석)

  • Chun, In-Suk;Kim, Sun-Sin;Park, Hyun-Ju
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.4
    • /
    • pp.290-300
    • /
    • 2009
  • The existing numerical methods on the vertical membrane breakwater have employed a linear analysis where the variable membrane tension occurring during membrane motions is assumed to be very negligible compared to the initial tension. In the present study, a quasi-nonlinear analysis is attempted such that the temporary tension of the membrane is substituted by the average tension for a wave period that is sought by an iterative calculation. The results showed that with the increase of the wave period the reflection coefficients appeared larger and the transmission coefficients smaller compared to the results of the linear analysis. The application of the quasi-nonlinear analysis also showed that the performance of the structure is closely dependent on the horizontal deformation of the membrane. In order to suppress the horizontal deformation, it may be required to take the larger initial tension of the membrane or to put additional mooring lines in the middle of the vertical faces of the membrane. But for theses methods to be effective, a largely sized surface float should be installed to secure enough buoyancy to support such downward forces.

Physical Properties of Rice Hull and Straw for the Handling Facilities

  • Oh, Jae H.;Kim, Myoung H.;Park, Seung J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.283-292
    • /
    • 1996
  • This study was performed to determine the physical properties of rice hull and straw which could be used for an optimum design and operation of the handling facilities for these rice crop by-products. The properties measured were kinetic friction coefficient , bulk density, and dynamic and static angle of repose. Rice hulls with moisture content of 13% and 21% were used throughout the test while rice straws of 10% and 16% moisture were chopped into 10mm length and used for the test. Friction coefficient was calculated from the horizontal traction forces measurement when a container holding the mass of rice hull and straw was pulled over mild steel. PVC, stainless steel, and galvanized steel surface by a universal testing machine. Bulk density was measured by an apparatus consisting of filling fundel and a receiving vessel. Dynamic angle of repose which is the angle at which the material will stand when piled was calculated from the photos of bulk samples after they were flowed by gravity and accumulated on a circular surface. Static angle of repose which is the angle between the horizontal and the sloping side of the material left in the container when discharging was also measured in the similar way. Results and conclusions from this study are summarized as follows . 1. Kinetic friction coefficient of both rice hull and straw were in the range of 0.26 -0.52 and increased with the moisture content. The magnitude of friction increased in the order of galvanized steel, stainless steel, PVC ,and mild steel. 2. Bulk densities of rice hull decreased while those of rice straw increased with moisture content increase . Average bulk densities of rice hull and straw were 96.8 and 74.7kg/㎥, respectively. 3. Average dynamic angle of repose for rice straw was 32.6$^{\circ}$ and those for 13% and 21% moisture rice hull were 38.9$^{\circ}$ and 44.9$^{\circ}$ , respectively. 4. Static angles of repose for both rice hull and straw showed increase with the moisture content. The values were 75.2\ulcorner and 80.2$^{\circ}$ for 13% and 21% moisture rice hull, respectively. Rice straws having 10% and 16% moisture content showed 87.3% and 89.2$^{\circ}$ static angle of repose, respectively.

  • PDF

The Nonlinear Motions of Cylinders(I) (주상체의 비선형 운동(I) -강제동요문제, 조파저항문제-)

  • H.Y. Lee;J.H. Hwang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.114-131
    • /
    • 1992
  • In the present work, a two-dimensional boundary-value problem for a large amplitude motion is treated as an initial-value problem by satisfying the exact body-boundary and nonlinear free-surface boundary conditions. The present nonlinear numerical scheme is similar to that described by Vinje and Brevig(1981) who utilized the Cauchy's theorem and assumed the periodicity in the horizontal coordinate. In the present thesis, however, the periodicity in the horizontal coordinate is not assumed. Thus the present method can treat more realistic problems, which allow radiating waves to infinities. In the present method of solution, the original infinite fluid domain, is divided into two subdomains ; ie the inner and outer subdomains which are a local nonlinear subdomain and the truncated infinite linear subdomain, respectively. By imposing an appropriate matching condition, the computation is carried out only in the inner domain which includes the body. Here we adopt the nonlinear scheme of Vinje & Brevig only in the inner domain and respresent the solution in the truncated infinite subdomains by distributing the time-dependent Green function on the matching boundaries. The matching condition is that the velocity potential and stream function are required to be continuous across the matching boundary. In the computations we used, if necessary, a regriding algorithm on the free surface which could give converged stable solutions successfully even for the breaking waves. In harmonic oscillation problem, each harmonic component and time-mean force are obtained by the Fourier transform of the computed forces in the time domain. The numerical calculations are made for the following problems. $\cdot$ Forced harmonic large-amplitude oscillation(${\omega}{\neq}0,\;U=0$) $\cdot$ Translation with a uniform speed(${\omega}=0,\;U{\neq}0$) The computed results are compared with available experimental data and other analytical results.

  • PDF

Photoelastic evaluation of Maxillary Posterior Crossbite Appliance (Maxillary Posterior Crossbite Appliance의 적용시 응력 분포에 관한 광탄성법적 연구)

  • Jang, Sung-Ho;Yoon, Young-Jooh;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.31 no.6 s.89
    • /
    • pp.549-558
    • /
    • 2001
  • This study was undertaken to demonstrate the forces in the maxillary alveolar bone generated by the activation of the maxillary posterior crossbite appliance In the treatment of posterior buccal crossbite caused by buccal ectopic eruption of the maxillary second molar. A photoelastic model was fabricated using a Photoelastic material (PL-3) to simulate alveolar bone and ivory-colored resin teeth. The model was observed throughout the anterior and posterior view in a circular polariscope and recorded photographically before and after activation of the maxillary posterior crossbite appliance. The following conclusions were reached from this investigation : 1. When the traction force was applied on the palatal surface of the second molar, stresses were concentrated at the buccal and palatal root apices and alveolar crest area. The axis of rotation of palatal root was at the root apex and that of the buccal root was at the root li4 area. In this result, palatal tipping and rotating force were generated. 2. When the traction force was applied on the buccal surface of the second molar, more stresses than loading on the palatal surface were observed in the palatal and buccal root apices. Furthermore, the heavier stresses creating an intrusive force and controlled tipping force were recorded below the buccal and palatal root apices below the palatal root surface. In addition, the axis of rotation of palatal root disappeared whereas the rotation axis of the buccal root moved to the root apex from the apical 1/4 area. 3. When the traction force was simultaneously applied on the maxillary right and left second molars, the stress intensity around the maxillary first molar root area was greater than the stress generated by the only buccal traction of the maxillary right or left second molar. As in above mentioned results, we should realize that force application on the palatal surface of second molars with the maxillary posterior crossbite appliance Produced rotation of the second molar and palatal traction, which nay cause occlusal Interference. That is to say, we have to escape the rotation and uncontrolled tipping creating occlusal interference when correcting buccal posterior crossbite. For this purpose, we recommend buccal traction rather than palatal traction force on the second molar.

  • PDF

Photoelastic evaluation of Mandibula Posterior Crossbite Appliance (Mandibular Posterior Crossbite Appliance의 적용시 응력 분포에 관한 광탄성법적 연구)

  • Jung, Won-Jung;Jang, Sung-Ho;Yoon, Young-Jooh;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.31 no.6 s.89
    • /
    • pp.559-566
    • /
    • 2001
  • This study was undertaken to demonstrate the forces in the mandibular alveolar bone generated by activation of the mandibular posterior crossbite appliance in the treatment of buccal crossbite caused by lingual eruption of mandibular second molar. A three-dimensional photoelastic model was fabricated using a photoelastic material (PL-3) to simulate alveolar bone. We observed the model from the anterior to the posterior view in a circular polariscope and recorded photogtaphically before and after activation of the mandibular posterior crossbite appliance. The following results were obtained : 1. When the traction force was applied on the buccal surface of the mandibular second molar, stress was concentrated at the lingual alveolar crest and root apex area. The axis of rotation also was at the middle third of the buccal toot surface and the root apex, so that uncontrolled tipping and a buccal traction force for the mandibular second molar were developed. 2. When the traction force was applied on the lingual surface of the mandibular second molar more stress was observed as opposed to those situations in which the force application was on the buccal surface. In addition, stress intensity was increased below the loot areas and the axis of rotation of the mandibular second molar was lost. In result, controlled tipping and intrusive tooth movements were developed. 3. When the traction forte was applied on either buccal or lingual surface of the second molar, the color patterns of the anchorage unit were similar to the initial color pattern of that before the force application. So we can use the lingual arch for effective anchorage in correcting the posterior buccal crossbite. As in above mentioned results, we must avoid the rotation and uncontrolled tipping, creating occlusal interference of the malpositioned mandibular second molar when correcting posterior buccal crossbite. For this purpose, we recommend the lingual traction force on the second molar as opposed to the buccal traction.

  • PDF

Emulsifying Properties of Gelatinized Octenyl Succinic Anhydride Modified starch from Barley (호화 옥테닐 호박산 전분의 유화 특성)

  • Kim, San-Seong;Kim, Sun-Hyung;Lee, Eui-Seok;Lee, Ki-Teak;Hong, Soon-Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.174-188
    • /
    • 2019
  • The present study was carried out to investigate the emulsifying properties of heat-treated octenyl succinic anhydride(OSA) starch and the interfacial structure at oil droplet surface in emulsions stabilized by heat-treated OSA starch. First, the aqueous suspensions of OSA starch were heated at $80^{\circ}C$ for 30 min. Oil-in-water emulsions were then prepared with the heat-treated OSA starch suspension as sole emulsifier and their physicochemical properties such as fat globule size, surface load, zeta-potential, dispersion stability, confocal laser scanning microscopic image(CLSM) were determined. It was found that fat globule size decreased as the concentration of OSA starch in emulsions increased, showing a lower limit value ($d_{32}:0.31{\mu}m$) at ${\geq}0.2wt%$. Surface load increased steadily with increasing OSA starch concentration in emulsions, possibly forming multiple layers. In addition, fat globule sizes were also influenced by pH: they were increased in acidic conditions and these results were interpreted in view of the change in zeta potentials. The dispersion stability by Turbiscan showed that it was more unstable in emulsions at acidic condition. Heat-treated OSA starch found to adsorb at the oil droplet surface as some forms of membrane (not starch granules), which might be indicative of stabilizing mechanism of OSA starch emulsions to be steric forces.

Comparison of bracket bond strength in various directions of force (교정용 브라켓에 가해지는 힘의 방향에 따른 결합강도의 비교)

  • Lee, Hyun-Jung;Lee, Hyung-Soon;Jeon, Young-Mi;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.33 no.5 s.100
    • /
    • pp.359-370
    • /
    • 2003
  • The purpose of this study was to evaluate the bond strength of orthodontic brackets bonded to metal bar with chemically cured adhesive (Ortho-one, Bisco Co, USA) in various types and directions of force application. Three types of metal bracket with different bracket base configurations; Micro-Loc base(Tomy Co, Japan), Chessboard base(Daesung Co, Korea), Non-etched Foil-Mesh base(Dentaurum, Germany); were used in this study. Peel, shear, tensile bond strengths were measured by universal testing machine and compared each other. The peel force directions applied were $0^{\circ},\;15^{\circ},\;30^{\circ},\;45^{\circ},\;60^{\circ},\;75^{\circ},\;90^{\circ}$ And then, in consideration of the different surface area of the bracket bases, the bond strength Per unit area were calculated and compared. The results obtained were summarized as follows: 1. The bond strengths according to the types and the directions of the forces were greatest at the shear forces in all three bracket base configuration groups(p<0.01). 2. As the peel force direction grew higher in degree, peel bond strength decreased. The Patterns of peel bond strength change according to force direction was similar in all three bracket base configurations. The minimum bond strength was 60 degree-peel bond strengths in all three bracket base configurations. 3. In Micro-Loc base group, minimum peel bond strength$(_{60}PBS)$ was in $29\%$ level of shear bond strength and $52\%$ level of tensile bond strength. In Chessboard base group, $_{60}PBS$ was in $34\%$ level of shear bond strength and $61\%$ level of tensile bond strength. In Non-etched Foil-Mesh base group, $_{60}PBS$ was in $34\%$ level of shear bond strength and $55\%$ level of tensile bond strength. 4. The bond strengths per unit area were lowest in Non-etched Foil-Mesh base group and highest in Chessboard base group(p<0.05). However, there were no differences in shear bond strength, tensile bond strength, $75^{\circ}\;and\;90^{\circ}$ per unit area between Micro-Loc and Chessboard base groups.

Effects of Occlusal Condition and Clenching Force on the Mandibular Torque Rotational Movement (교합조건 및 이악물기 힘의 변화가 하악의 비틀림 회전운동에 미치는 영향)

  • Oh, Min-Jung;Han, Kyung-Soo
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.4
    • /
    • pp.411-426
    • /
    • 2005
  • The purpose of this study was to investigate the effects of occlusal condition and clenching level on the mandibular torque rotational movement. For this study, healthy 14 men without any symptoms and signs of temporomandibular disorders were selected. Mandibular torque rotational movement was observed in each circumstance of combination of three occlusal conditions such as natural dentition, with wafer of 3.6 mm thickness, and wafer with resin stop of 14 mm thickness total during hard biting of bite stick at maximum voluntary contraction(MVC) and 50% of MVC level of surface EMG activity of masseter muscle. Electromyographic activity and mandibular torque rotational movement were observed using BioEMG and BioEGN in $BioPak^{(R)}$ system. Each biting movement in each circumstance was composed of clenching one time and hard biting of wooden stick two times. The observed items were opening distance, velocity and amount of torque rotational movement in mandibular movement, and the data were statistically processed with $SPSS^{(R)}$ windows (ver.10.0). The results of this study were as follows: 1. There were no differences in the mandibular movement distance between those value in both biting sides, and between those in both clenching forces, but the mandibular velocity showed a different results by clenching force. For the amount of torque rotational movement, there were no difference in the value of the frontal plane but some significant difference was in the value of the horizontal plane by biting side. 2. The mandibular movement distance and the mandibular velocity in both planes were higher by maximum voluntary contraction than those by half maximum voluntary contraction, and amount of torque rotational movement in the horizontal plane was also increased by maximum voluntary contraction. 3. The opening distance in both planes were decreased with the increase of vertical dimension of occlusion, namely, by the occlusal appliances, and this pattern was also showed in the mandibular velocity in case of hard biting by maximum voluntary contraction. However, the amount of torque rotational movement were not different by the increase of vertical dimension of occlusion. 4. The value of angle and distance of the torque rotational movement in the hard biting of wooden stick were generally higher than those in the clenching without wooden stick in both planes without regard to occlusal conditions and/or clenching forces.

Optimal Spatial Scale for Land Use Change Modelling : A Case Study in a Savanna Landscape in Northern Ghana (지표피복변화 연구에서 최적의 공간스케일의 문제 : 가나 북부지역의 사바나 지역을 사례로)

  • Nick van de Giesen;Paul L. G. Vlek;Park Soo Jin
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.2 s.107
    • /
    • pp.221-241
    • /
    • 2005
  • Land Use and Land Cover Changes (LUCC) occur over a wide range of space and time scales, and involve complex natural, socio-economic, and institutional processes. Therefore, modelling and predicting LUCC demands an understanding of how various measured properties behave when considered at different scales. Understanding spatial and temporal variability of driving forces and constraints on LUCC is central to understanding the scaling issues. This paper aims to 1) assess the heterogeneity of land cover change processes over the landscape in northern Ghana, where intensification of agricultural activities has been the dominant land cover change process during the past 15 years, 2) characterise dominant land cover change mechanisms for various spatial scales, and 3) identify the optimal spatial scale for LUCC modelling in a savanna landscape. A multivariate statistical method was first applied to identify land cover change intensity (LCCI), using four time-sequenced NDVI images derived from LANDSAT scenes. Three proxy land use change predictors: distance from roads, distance from surface water bodies, and a terrain characterisation index, were regressed against the LCCI using a multi-scale hierarchical adaptive model to identify scale dependency and spatial heterogeneity of LUCC processes. High spatial associations between the LCCI and land use change predictors were mostly limited to moving windows smaller than 10$\times$10km. With increasing window size, LUCC processes within the window tend to be too diverse to establish clear trends, because changes in one part of the window are compensated elsewhere. This results in a reduced correlation between LCCI and land use change predictors at a coarser spatial extent. The spatial coverage of 5-l0km is incidentally equivalent to a village or community area in the study region. In order to reduce spatial variability of land use change processes for regional or national level LUCC modelling, we suggest that the village level is the optimal spatial investigation unit in this savanna landscape.