• Title/Summary/Keyword: surface force

Search Result 4,501, Processing Time 0.028 seconds

Analysis of the Effects of Cutting Force and Surface Roughness in the Cutting Conditions of Plasma Source Ion Implantation Tools (플라즈마 이온주입 공구의 가공조건이 절삭력과 표면 거칠기에 미치는 영향 분석)

  • Kang, Seong-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.755-760
    • /
    • 2012
  • In this study, three dimensional cutting force components and surface roughness appeared in high speed cutting by using tungsten carbide endmill tools implanted ion or not found mutual relations through several analysis of statistical dispersion. It is showed that cutting force(Fx) is affect with spindle speed and feed rate, cutting force(Fy) is affect with spindle speed and ion implantation time and cutting force(Fz) is affect with feed rate in interaction through the statistical method of ANOVA of cutting force and surface roughness, it is analyzed that it is affected of spindle speed and feed rate in surface roughness.

Analysis of Nano-contact Between Nano-asperities Using Atomic Force Microscopy (나노스케일 표면돌기 간의 미세접촉에 대한 해석)

  • Ahn, Hyo-Sok;Jang, Dong-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.369-374
    • /
    • 2009
  • In micro/nano-scale contacts in MEMS and NEMS, capillary and van der Waals forces generated around contacting micro-asperities significantly influence the performance of concerning device as they are closely related to adhesion and stiction of interacting surfaces. In this regard, it is of prime importance to accurately estimate the magnitude of surface forces so that an optimal solution for reducing friction and adhesion of micro/nano-surfaces may be obtained We introduced an effective method to calculate these surface forces based on topography information obtained from an atomic force microscope. This method was used to calculate surface forces generated in the contact interface formed between diamond-like carbon coating and $Si_3N_4$ ball. This method is shown to effectively demonstrate the influence of capillary force in the contact area, especially in humid atmosphere.

  • PDF

Analysis on the Precision Machining in End Milling Operation by Simulating Surface Generation (엔드밀 가공시 표면형성 예측을 통한 정밀가공에 관한 연구)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.229-236
    • /
    • 1999
  • The surface, generated by end milling operation, is deteriorated by tool runout, vibration, tool wear and tool deflection, etc. Among them, the effect of tool deflection on surface accuracy is analyzed. Surface generation model for the prediction of the topography of machined srufaces has been developed based on cutting mechanism and cutting tool geometry. This model accounts for not only the ideal geometrical surface, but also the deflection of tool due to cutting force. For the more accurate prediction of cutting force, flexible end mill model is used to simulate cutting process. Computer simulation has shown the feasibility of the surface generation system. Using developed simulation system, the relations between the shape of end mill and cutting conditions are analyzed.

  • PDF

Surface energy assisted gecko-inspired dry adhesives

  • Rahmawan, Yudi;Kim, Tae-Il;Kim, Seong-Jin;Lee, Kwang-Ryeol;Moon, Myoung-Woon;Suh, Kahp-Yang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.449-449
    • /
    • 2011
  • We reported the direct effect of intrinsic surface energy of dry adhesive material to the Van der Waals and capillary forces contributions of the total adhesion force in an artificial gecko-inspired adhesion system. To mimic the gecko foot we fabricated tilted nanohairy structures using both lithography and ion beam treatment. The nanohairy structures were replicated from Si wafer mold using UV curable polymeric materials. The control of nanohairs slanting angles was based on the uniform linear argon ion irradiation to the nanohairy polymeric surface. The surface energy was studied utilizing subsequent conventional oxygen ion treatment on the nanohairy structures which resulted in gradient surface energy. Our shear adhesion test results were found in good agreement with the accepted Van der Waals and capillary forces theory in the gecko adhesion system. Surface energy would give a direct impact to the effective Hamaker constant in Van der Waals force and the filling angle (${\varphi}$) of water meniscus in capillary force contributions of gecko inspired adhesion system. With the increasing surface energy, the effective Hamaker constant also increased but the filling angle decreased, resulting in a competition between the two forces. Using a simple mathematical model, we compared our experimental results to show the quantitative contributions of Van der Waals and capillary forces in a single adhesion system on both hydrophobic and hydrophilic surfaces. We found that the Van der Waals force contributes about 82.75% and 89.97% to the total adhesion force on hydrophilic and hydrophobic test surfaces, respectively, while the remaining contribution was occupied by capillary force. We also showed that it is possible to design ultrahigh dry adhesive with adhesion strength of more than 10 times higher than apparent gecko adhesion force by controlling the surface energy and the slanting angle induced-contact line of dry adhesive the materials.

  • PDF

Investigation of friction effects between needles patterned using laser and elastomer (레이저에 의해 패터닝 된 바늘과 탄성중합체와의 마찰 효과)

  • Kim, Jae-Gu;Ro, Seung-Kook;Park, Jong-Kweon;Cho, Sung-Hak;Whang, Kyung-Hyun
    • Laser Solutions
    • /
    • v.15 no.3
    • /
    • pp.1-6
    • /
    • 2012
  • The friction force of patterned needle in elastomer have been investigated to verify the application for bio and plastic industry. The micro pattern on the needle surface were prepared by 266 nm, 20 ns laser and 800 nm, 220 fs laser, which were able to generate the different surface roughness. The friction force was measured by the load cell of 10 N capacity. As the results, the friction force of no patterned needle is almost constant during the needle penetrates the silicone rubber sample. However, the needle having asperities shows the variation of the friction force. The higher the surface roughness is, the smaller the friction force is until the surface roughness is very high. In our experiment conditions, the reduction of the friction force by 20 % compared to no pattern needle was achieved with straight and $50{\mu}m$ discrete line generated by 266 nm, 20 ns laser.

  • PDF

A Study of the on-Line Surface Roughness Monitoring using the Cutting Force in Face Milling Operation (정면밀링작업에서 절삭력을 이용한 On-Line 표면조도 감시에 관한 연구)

  • Baek, Dae Kyun;Ko, Tae Jo;Kim, Hee Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.185-193
    • /
    • 1997
  • This paper presents the on-line monitoring of the surface roughness in a face milling operation. The cut- ting force was used to monitor the surface roughness, since the insert run-outs not only deteriorate surface roughness but also change cutting force. AR model and band energy method were taken to extract the fea- tures from the cutting force. The features extracted from AR modelling are more accurate about the moni- toring than those from band energy method, whereas, the computing speed of the former is slow. An artifi- cal neural network discriminated the level of the surface roughness by using the features extracted via signal processing.

  • PDF

Galloping Algorithm of Quadruped Robots on Irregular Surface (비평탄면에서의 4 족 로봇의 갤로핑 알고리즘)

  • Shin, Chang-Rok;Park, Jong-Hyeon;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.888-893
    • /
    • 2008
  • In This paper proposes the control algorithm for quadruped robots on irregularly sloped uneven surface. Body balance is important in stable running locomotion. Since the body balance is determined by the forces applied at the feet during touchdown phase, the ground reaction force is controlled for stable running. To control the forces at each foot, the desired force is generated. The generated desired force is compared with actual contact force, then, the difference between them modifies the foot trajectory. The desired force is generated by combination of the rate change of the angular and linear momentum at flight. Then the rate change of momentum determines each force distribution. The distribution of the force is carried out by fuzzy logic. The computer simulation is carried out with the commercial software RecurDyn$^{(R)}$. Dynamic model simulation program show that the stable running on the irregularly sloped uneven surface are accomplished by the proposed method.

  • PDF

An investigation of worn DLC coatings using atomic force microscopy (DLC 코팅 마모면에 대한 원자력 현미경을 이용한 고찰)

  • ;;S.A.Chizhik
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.299-304
    • /
    • 2001
  • Tribofilms formed on worn surface protect the DLC coating surface and decrease the friction coefficient. However it is very difficult to evaluate their micromechanical properties due to their small thickness, inhomogeneity and discontinuity. The phase contrast images in tapping mode atomic force microscopy allow an estimation of inhomogeneity in micromechanical properties of the sample surface. The purpose of this investigation is to demonstrate how the phase contrast images contribute to the characterization of thin tribofilms.

  • PDF

Effect of aerodynamic drag force on liquid metal convection in GTA welding (GTA 용접시 발생하는 용융금속의 유동에 미치는 공기역학적 향력의 영향)

  • 나석주;김성도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.575-583
    • /
    • 1991
  • The weld pool convection problem that occurs during the stationary GTA welding has been studied, considering the four driving forces for weld pool convection, i.e., the electromagnetic force, the buoyancy force, the aerodynamic drag force, and the surface tension force at the weld pool surface. In the numerical simulation, the difficulties associated with the irregular moving liquid-solid interface have been successfully overcome by adopting a Boundary-Fitted Coordinate system. In the experiments to show the validity of the numerical analysis, a deep periphery and shallow centerpentrated weld pool shape was observed from the etched specimen. It could be revealed that this type of weld pool shape could be simulated, only when some of aerodynamic drag force distributions are considered. Although slight disagreement arose, the calculated and the observed weld pool shapes were in a reasonable agreement.

Reducing Separation Force for Projection Stereolithography based on Constrained Surface Technique (규제액면기법의 전사방식 광조형 시스템을 위한 이형력 감소)

  • Kim, Hye Jung;Ha, Young Myoung;Park, In Baek;Kim, Min Sub;Jo, Kwang Ho;Lee, Seok Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.1001-1006
    • /
    • 2013
  • Projection-based stereolithography is divided into constrained-surface and free-surface type according to controlling liquid layer. The constrained-surface type has a uniform layer thickness due to the use of a projection window, which covers the pattern generator such as liquid crystal display. However, the adhered resin on the projection window causes trouble and requires great separation force when the cured layer is separated from the window. To minimize the separation force, we developed a system to measure the separation force. The influence of material covering the pattern generator and the resin temperature is investigated in the system. Several structures according to the resin temperature and the velocity of z-axis elevation are compared. As a result, the fabrication condition to minimize the separation force reduces the process time.