• Title/Summary/Keyword: surface flow wetlands

검색결과 67건 처리시간 0.022초

연천 은대리 물거미 서식지의 수문적 특성 (Hydrological Properties of the Water Spider Habitat in Yeoncheon)

  • 양재혁
    • 한국지형학회지
    • /
    • 제26권1호
    • /
    • pp.107-119
    • /
    • 2019
  • In recent years, the drying of the water spider habitat has been progressing rapidly. This is the primary cause of extreme climatic events in 2014/2015 with overall reduction in annual precipitation, but impermeable clayey layer formed in the superficial formation also plays an important role. The clayey layer is a critical factor in the formation of wetlands on a well-drained lava plateau, but paradoxically, it restricts the connection with ground water, increasing the instability of the water balance and making it precipitation-dependent structure. In addition, construction of roads/drainways has also caused drying of wetlands by blocking or rapidly spilling surface water/sheet flow. Therefore, to keep the wetlands sustainable, it should increase the flow into the wetlands by removing the road/drainways and floodgates installed to reduce the outflow.

연천 은대리 물거미 서식지의 지형적 특성 (Geomorphological Characteristics of the Water Spider Habitat in Yeoncheon)

  • 양재혁
    • 한국지형학회지
    • /
    • 제25권4호
    • /
    • pp.77-88
    • /
    • 2018
  • Wetlandsis developing on the lava plateau in Eundae-ri, even though there are no majorstreams into this area. As a result of drilling, 1~2m clay layer is founded under the superficial formations of the wetland, which are the main reasons for formation of the wetlands by limiting vertical drainage. The clay layer's Granulometry/XRD show very different characteristics from in situ weathering of basalt, and since 2~3cm of sand layer exist within the profile, the clay layer seems to be supplied and deposited from outside through surface/sheet flows. To keep the wetlands sustainably, the supply of water into the wetlands has to be increased by restoring the surface/sheet flow which is limited or deformed by pavement road.

인도의 가정 및 산업 폐수 처리를 위한 인공습지: 총론 (Constructed Wetlands in Treating Domestic and Industrial Wastewater in India: A Review)

  • 케이 에스 파르헨;나쉬 제트 레예스;김이형
    • 한국습지학회지
    • /
    • 제23권3호
    • /
    • pp.242-251
    • /
    • 2021
  • 인디아와 같은 개발 도상국에서는 규제없는 폐수 방류가 지표수 수질에 심각한 영향을 주고 있다. 인공습지(CW)는 생태학적 기작에 의하여 폐수 처리를 함으로써 수질정화와 함께 다양한 효과를 제공하는 효율적인 기술이다. 본 연구는 인디아의 폐수처리를 위해 조성된 다양한 형태의 인공습지에 대하여 자료를 정리하고 분석함으로써 객관적 효과 평가를 수행하고자 수행되었다. 연구에 사용된 인공습지 데이터는 기출판된 문헌에서 수집되었으며, 산업폐수의 경우 화학적 산소요구량(COD), 생화학적 산소요구량(BOD)이 높게 나타났다. 인디아의 생활하수 총질소(TN)와 총인(TP)은 산업폐수보다 낮은 농도를 보였다. 수직흐름 인공습지(VFCW)와 수평흐름 인공습지(HFCW)는 생활하수 및 산업 폐수의 TSS, BOD, TP 제거에 효과적으로 나타났다. 그러나 COD는 하이브리드 인공습지(HCW)에서 높은 제거율을 보였다. 인도에서는 인공습지를 폐수처리 시설의 고도처리로 활용될 경우 수질이 크게 향상되는 것으로 나타났다. 인공습지의 방류수 수질은 관개용수 및 기타 농업용수로 활용가능한 수질로 평가되었다. 본 연구결과는 인디아의 지역적 특성에 적정한 인공습지 설계에 기여할 것으로 평가된다.

하천고수부지 수질정화 자유수면인공습지의 초기운영단계 인제거 (Phosphorous Removal Rate of a Surface-Flow Treatment Wetland System Constructed on Floodplain During Its Initial Operating Stage)

  • 양홍모
    • 한국환경농학회지
    • /
    • 제22권4호
    • /
    • pp.251-254
    • /
    • 2003
  • Phosphorous removal rate and emergent plant growth were examined of a surface-flow constructed treatment wetland system, whose dimensions were 31 meter in length and 12 meter in width. The system was established on floodplain in the down reach of the Kwangju Stream in Korea in one and half months from May to June 2001. Cattails(Typha angustiflora) were transplanted in the system. They were dug out of natural wetlands and stems were cut at about 40 cm height from their bottom ends. Water of the Kwangju Stream were funneled into it via a pipe by gravity flow and its effluent were discharged back into it. The stems of cattails grew from 45.2 cm in July 2001 up to 186 cm in September 2001 and the number of cattail stems per square meter increased from 22 in July 2001 to 53 in September 2001. The early establishment of cattails was good. Volume and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Inflow averaged $40\;m^3/day$ and hydraulic retention time was about 1.5 days. The concentration of total phosphorous in influent and effluent was 0.85 mg/L, 0.41 mg/L, respectively. The average removal rate of total phosphorous in the system was about 52%. The retention efficiency was slightly lower, compared with that in surface-flow wetlands operating in North America, whose retention efficiency was reported to be about 57%. The lower abatement rate could result from the initial stage of the system and inclusion of two cold months into the six-month monitoring period. Root rhizosphere in wetland soils and litter-soil layers on bottoms were not properly developed. Increase of standing density of cattails within a few years will establish both root zones and substrates beneficial to the removal of phosphorous, which may lead to increase of the phosphorous retention rate. The system was submerged one time by heavy storm during the monitoring period. The inundation, however, scarcely disturb its environment.

오염하천의 정화를 위한 파일럿 규모의 인공습지 적용 (Performance Study on Pilot-scale Constructed Wetlands in order to Restore Contaminated Stream)

  • 김승준;최용수;배우근
    • 한국물환경학회지
    • /
    • 제22권3호
    • /
    • pp.546-556
    • /
    • 2006
  • The purpose of this study is to improve the polluted stream water quality by pilot-scale five different constructed wetlands (CWs). Cell 1 to 3 are newly designed 2SFCW (Surface-subsurface flow CW) with 1 to 3 flow shifters (FS) in the middle of the wetland system. Cell 4 and 5 are control CW (CCW), but Cell 5 is the same type as Cell 3. The FS, which converts the route of surface and subsurface flow between two wetlands connected in series, was able to enhance the treatability of TN via nitrification and denitrification and of SS due to filtration and sedimentation. The void fraction and dispersion number of Cell 1, 2 and 3 obtained from the RTD analysis were found to be 0.73 and 0.17, respectively. COD and TP removal efficiencies of Cell 1 to 3 were similar to that of Cell 4 and 5. SS removal efficiencies of Cell 1 to 3 and 5 with FS were 5-10% higher than that of Cell 4 without FS. TN removal efficiencies of Cell 1 to 3 were 3-14% higher than that of Cell 4 and 5. The average $R^2$ values of COD, SS, TN and TP obtained from nonlinear regression analysis were similar to the results of other researchers.

고수부지에 조성한 수질정화 여과습지의 초기운영단계 총인 제거 (Total Phosphorus Removal Rate of a Subsurface-Flow Wetland System Constructed on Floodplain During Its Initial Operation Stage)

  • 양홍모
    • 한국환경복원기술학회지
    • /
    • 제6권6호
    • /
    • pp.49-55
    • /
    • 2003
  • Total phosphorous removal rate was examined of a subsurface-flow treatment wetland system which was constructed on floodplain in the down reach of the Kwangju Stream in Korea from May to June 2001. Its dimensions were 29 meter in length, 9 meter in width and 0.65 meter in depth. A bottom layer of 45 cm in depth was filled with crushed granite with about 15~30 mm in diameter and a middle layer of 10 cm in depth had pea pebbles with about 10 mm in diameter. An upper layer of 5 cm in depth contained course sand. Reeds(Phragmites australis) were transplanted on the surface of the system. They were dug out of natural wetlands and stems were cut at about 40 cm height from their bottom ends. Water of the Kwangju Stream flowed from a submerged dam into it via a pipe by gravity flow and treated effluent was funneled back into the Stream. The number of reed stems increased from 80 stems/$m^2$ in July 2001 to 136 stems/$m^2$ in September 2001. The hight of stems was 44.2 cm in July 2001 and 75.3 cm in September 2001. The establishment of reeds at early operating stage of the system was good. Volume and water quality of inflow and outflow were investigated from July 2001 through December 2001. The average inflow was 40 $m^3$/day and hydraulic detention time was about 1.5 days. The concentration of total phosphorous n influent and effluent was 0.83 and 0.33 mg/L, respectively. The removal rate of total phosphorous averaged about 60%. The removal efficiency was slightly higher, compared with that of subsurface-flow wetlands operating in North America, whose retention rate of total phosphorous was reported to be about 56%. The good abatement rate could be attributed to sedimentation of particle phosphorous in pores of the media and adsorption of phosphorous to the biofilm developed on the surface of them. Increase of standing density of reeds within a few years will develop root zones which may lead to increment in the phosphorous retention rate.

축산단지 비점오염물질 저감을 위한 자유수면형 인공습지 적용 (Application of Free Water Surface Constructed Wetland for NPS Control in Livestock Watershed Area)

  • 이정용;강창국;이소영;김이형
    • 한국습지학회지
    • /
    • 제13권3호
    • /
    • pp.481-488
    • /
    • 2011
  • 금강수계의 논산 양지리에 위치한 인공습지는 축산폐수처리시설에서 방류되는 처리수의 추가처리와 함께 강우시 유역에서 유출되는 비점오염물질을 처리하기 위하여 설치되었다. 본 시설은 2008년 설치된 이후부터 시설검증을 위한 모니터링을 수행중에 있으며 본 연구결과는 시설의 설치 직후로부터 1년간의 모니터링 결과를 정리한 것이다. 모니터링 결과, 평균 오염물질 저감효율은 TSS가 86%, BOD가 60%, TN은 45%, TP의 경우 70%로 산정되었다. 대부분의 모니터링에서 입자상 물질과 인의 평균 저감효율이 60% 이상의 높은 저감효율을 보이는 반면 질소의 경우 축산폐수의 높은 질소농도에 비해 낮은 유기물 농도에 의하여 낮은 저감효율을 나타내는 것으로 분석되었다. 따라서 유출수내 질소제거능 향상을 위해서는 긴 수리학적 체류시간 및 추가적 DO공급이 필요한 것으로 평가되었다.

자유수면에서 마이크로 중력식 와류 수차 성능에 블레이드의 상대위치 변화가 미치는 영향 분석 (Effect Analysis of Relative Position of Blade on Performance of Micro Gravitational Vortex Turbine in Free Water Surface)

  • 최인호;김종우;정기수
    • 한국습지학회지
    • /
    • 제24권3호
    • /
    • pp.196-203
    • /
    • 2022
  • 본 논문은 자유수면에서 마이크로 중력식 와류 수차의 성능에 블레이드 상대위치 변화의 영향을 이해하는 것이다. 일정한 와류 유동에서 자유수면 아래 상대 와류 수심비(y/hv)의 범위 0 ~ 0.778 지점에 설치된 블레이드의 위치 변화에 따른 마이크로 와류 수차의 회전수, 전압 및 전류를 측정하였다. 유량은 0.0063 ~ 0.00662 m3/s 범위이다. 실험 결과는 유입되는 유속과 난류강도의 분포가 변하기 때문에 블레이드의 상대위치가 마이크로 와류 수차의 성능에 영향을 미치는 것으로 나타났다. 와류 수차에서 발생하는 에너지의 최대량은 상대 와류 수심비 0.111 ~ 0.222 지점에서 발생했다. 상대 와류 수심비 0.111 지점의 출력은 자유수면 아래 상대 와류 수심비 0.588 지점보다 약 2.4배 더 크게 나타난다.

자유수면형 인공습지에서 식물식재 유무가 처리효율에 미치는 영향 (Effects of Plant on Pollutant Removal Rate n Surface-flow Constructed Wetlands)

  • 함종화;김형중;김동환;홍대벽
    • 한국농공학회논문집
    • /
    • 제53권6호
    • /
    • pp.85-91
    • /
    • 2011
  • Three different types of wetlands (unplanted wetland, reed planted wetland, cattail planted wetland) were constructed at the mouth of Seokmoon reservoir with 910 $m^2$ each to examine the effects of wetland plant on pollutant removal rate in constructed wetland, and operated for 9 years (2002~2010). Water depth of the wetland was maintained at 0.3~0.5 m, flow rate was about 40~200 $m^3$/day, and retention time was managed at about 1~5 days. There was no difference in removal rate of SS, TN, and TP between reed wetland and cattail wetland. Removal rate of SS and TN in planted wetland with reed and cattail were higher than unplanted wetland, whereas removal rate of TP in unplanted wetland was higher then planted wetland. The monthly variation of removal rate in planted wetlands was high compared with unplanted wetland. From the long term monitoring results, SS and TN removal rates of period3 (2008~2010) were higher than period1 (2002~2004) in planted wetland, whereas TP removal rate was decreased as time goes on. Overall, pollutant removal rate in constructed wetland was more influenced by existence of plants than by plant species. Although constructed wetland is operated long term period, SS, TN, and TP removal rate (SS 90 %, TN 60 %, TP 40 %) can be maintained high values.

고수부지활용 수질정화 자유수면 인공습지의 초기처리수준 (Treatment Efficiency of a Surface - Flow Wetland System Constructed on Floodplain)

  • 양홍모
    • 한국환경농학회지
    • /
    • 제20권4호
    • /
    • pp.277-283
    • /
    • 2001
  • This paper presents treatment efficiency and plant growth of a surface-flow constructed wetland system (30 meter in length and 10 meter in width) over one year after its establishment on a floodplain of a stream. Cattails (Typha angustiflora) grown on pots were transplanted on one half of its area from inlets and reeds (Phragmites australis) on another half from an outlet. Effluent discharged from a secondary-level treatment plant was funneled into the system. The stems of cattails and reeds emerging in April 2001 grew up to 165.9 cm and 95.3 cm, respectively until July 2001. The number of stems of cattails arid reeds in July 2001 increased by 65% and 100%, respectively, compared with that just after their planting. The growth of cattails was better than that of reeds during study period. The removal rates for SS, $BOD_5$, T-N and T-P was 33%, 43%, 31%, and 51%, respectively. The system was inundated seven times by storms over the monitoring period, which disturbed its environment and led to its lower treatment rates. The increase of SS concentration in effluent after inundation of the system was attributed to the falls of soil particles onto its water surface, which had been attached to the emergent plants by floods. Purification rates for T-N were relatively low for the period of late fall through winter until early spring due to lower water temperature which may have retarded microbial nitrification and denitrification mechanisms. Reduction in T-P concentration during fall and winter was relatively higher than that during summer and spring, which may have resulted from no system perturbations by floods and heavy storms during fall and winter.

  • PDF