• Title/Summary/Keyword: surface flashover

Search Result 125, Processing Time 0.03 seconds

A Study on the Electrical and Mechanical Properties of Conduction Cooling HTS SMES

  • Choi, Jae-Hyeong;Choi, Jin-Wook;Shin, H.S.;Kim, H.J.;Seong, K.C.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.2
    • /
    • pp.29-32
    • /
    • 2009
  • The conduction cooling HTS SMES magnet is operated in cryogenic temperature. The insulation design at cryogenic temperature is an important element that should be established to accomplish miniaturization that is a big advantage of HTS SMES. However, the behaviors of insulators for cryogenic conditions in air or vacuum are virtually unknown. Therefore, we need active research and development of insulation concerning application of the conduction cooling HTS SMES. Specially, this paper was studied about high vacuum and cryogenic temperature breakdown and flashover discharge characteristics between cryocooler and magnet-coil. The breakdown and surface flashover discharge characteristics were experimented at cryogenic temperature and vacuum. Also, we were experimented about mechanical properties of 4-point bending test. From the results, we confirmed that about research between cryocooler and magnet-coil established basic data in the insulation design.

The Comparisons of the Surface Flashover Characteristics at $SF_6$ and the various insulation media. ($SF_6$와 이종절연재의 연면방전 특성 비교)

  • Lee, Jung-Hwan;Park, He-Rie;Park, Sung-Gyu;Choi, Young-Kil;Lee, Kwang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1400_1401
    • /
    • 2009
  • In this paper describes the comparisons of the surface flashover characteristics according to the change of the insulation media by experimental GIS(Gas Insulated Switchgear) chamber in accordance with change of pressure(P) and electrode distance(d). The using insulation medias are $SF_6$, Dry-Air, I-Air(Imitation Air, $N_2$ : $O_2$ = 79[%] : 21[%]), $N_2:O_2$ mixture gas and pure $N_2$. In this study, in order to compare the properties $SF_6$ and order insulation gas, we investigated the properties of the various insulation media with a knife to knife electrode under ac high voltage application. The gas pressure was changed from 1 to 5[atm]. as a result, it was found that dielectric strength is $SF_6$ > I-Air > Dry-Air and the best environmental preservation gas is Dry-Air.

  • PDF

Investigation of tracking resistance of engineering plastic and engineering plastic coated silicon rubber (엔지니어링 플라스틱과 실리콘 고무가 코팅된 엔지니어링 플라스틱의 내트래킹성 검토)

  • Heo, Jun;Jung, Eui-Hwan;Lim, Jong-Nam;Lim, Kee-Joe;Kang, Seong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1449_1450
    • /
    • 2009
  • Surface contamination and leakage current have caused operating problems. A flashover in a substation may result in destruction of an insulator or many others electrical equipment. Engineering plastics have good characteristic (light weight, good productivity and little of void) as compare with epoxy or porcelain insulators. Outdoor insulator must have resistance to contamination. However, they are not suited to outdoor insulator by reason of being not good hydrophobic. RTV has a good property of hydrophobic and ATH has characteristic obstructing exothermic reaction. In order to reduce the incidence of insulator flashover and damage, the silicon rubber contained nano size ATH coat on surface of engineering plastics. In this paper, it compares resistance tracking of the engineering plastic coated RTV with that of non-coated engineering plastic and ATH filled composites performed much better than non-filled composites.

  • PDF

S-Transform Based Time-Frequency Analysis of Leakage Current Signals of Transmission Line Insulators under Polluted Conditions

  • Natarajan, A.;Narayanan, Suthanthiravanitha
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.616-624
    • /
    • 2015
  • Flashover of power transmission line insulators due to contamination is a major threat to the reliable operation of power system. This paper deals with the analysis of leakage current characteristics of polymeric insulator using S-Transform technique in order to develop a better diagnostic tool to identify the surface condition of outdoor polymeric insulators. In this work, experiments were carried out on 11 kV silicone rubber insulator under AC voltage at different pollution levels. Moving average technique was adopted to find the trend followed by LC peak at different relative humidity conditions. S-Transform was used to find the relationship between energy and frequency content of the leakage current signal with respect to increase in pollution level over a period of time. From the S-Transform time-frequency contour analysis, point of transition to severe arcing due to increase in pollution and its thershold limit were evaluated. Reported results show that the surface condition of insulators could be easily identified from the S-Transform time-frequency analysis of leakage current signals.

Electric Fire Prediction by Detection of Discharge Signal (방전신호 검출에 의한 전기화재 예측)

  • 길경석;송재용;권장우
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.413-419
    • /
    • 2004
  • This paper describes a technique that can predict electric fires by detection of discharge voltage signals caused by the use of electric facilities. In the experiment, various discharge modes, a flashover or a surface discharge through insulation paper and a line to line short, were simulated to acquire electrical information for predicting electrical fire as discharge modes. From the experimental results, it is hewn that electorial discharges which are ranked as majority causes of electric fires generate characterized signals distinguished from power frequency. Finally. We designed a prototype discharge detector based on the experimental results, and the detector is applied to a power lines. This study showed that the prediction of electric fires is possible by monitoring discharge voltage signals in electric power lines.

The Aging Characteristics of Polymer Electrical Insulation Materials bv UV Radiation and Salt Water Spray (옥외용 고분자 전기절연재료의 염수 및 UV조사에 의한 열화 특성)

  • 최남호;한상일;한상옥;박강식;김종석;박양범
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.221-224
    • /
    • 1997
  • In this study we investigated the acting characteristics of Polymers for electrical insulation by UV radiation and salt water spray treatment. We used the Polymers such as EPDM, SR. PTFE. EVA. We measured contact angle and surface resistance to know the aging characteristic of Polymer surface. And we use SEM to observe the change of the surface shape. Dry flashover voltage test impulse voltage test were carried for the polymer insulator(EVA) . Through this experiment and the analysis we could know the polymers have a good resistance to weathering conditions like as salt spray UV irradiation and mix of them. And we can compare the aging characteristics between Polymers. As a result, we could know that the surface characteristics of PTFE is better than the other. And the degree, electrical characteristics is affected by change of surface shape is not big.

  • PDF

A Study on Anti-Pollutions Characteristics of RTV Silicone Rubber (RTV 실리콘 고무의 내오손 특성에 관한 연구)

  • Huh, Chang-Su;Lee, Sang-Youb;Youn, Bok-Hee;Hwang, Myung-Kun;Lee, Jong-Han
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1651-1653
    • /
    • 1999
  • Room Temperature Vulcanizing (RTV) Silicone Rubber has been widely used to coat porcelain insulator to prevent formation water filming on insulator surface. and RTV silicone rubber has water repellency to suppress leakage current and consequent flashover. RTV silicone rubber's surface has been degradated by outdoor condition such as dust, salt, and water. etc. ESDD(Equivalent Salt Deposit Density) and leakage currents are increased by polymer surface toughness and degradation. In this paper, we investigated relations of surface toughness, ESDD, and leakage currents.

  • PDF

The Influence of Forest Fire on the Polymer Insulator for Transmission Lines (송전용 폴리머 애자에 대한 산불 영향 평가)

  • Choi, In-Hyuk;Lee, Dong-Il;Lee, Chul-Ho;Kang, Byoung-Kyu;Lee, Won-Kyo;Park, Jun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.787-792
    • /
    • 2007
  • To understand the effects of forest fires on polymer insulators for transmission lines, the forest fire simulation tests were performed with polymer and porcelain insulators at Gochang testing center. These tests consisted of energizing 90 kV at line-to-ground voltage of 154 kV lines and open flame rising up to $600-630^{\circ}C$ as being measured at insulator surface. Mechanical and electrical characteristics such as specific mechanical load, leakage current, low frequency dry flashover voltage and impulse flashover voltage were analyzed for the polymer insulators before, during and after simulation tests compared with porcelain insulators. At the end of fire simulation tests, there was no detrimental deterioration of any insulators. All insulators passed the criteria of KEPCO specification. This study showed that forest fire simulation had no impact on polymer insulators.

Insulation Characteristics and Thermography Diagnosis of Porcelain Insulators for the Distribution Systems (배전용 자기재 현수애자의 절연특성과 열화상 진단)

  • Joung, Jong-Man;Kim, Dong-Myeong;Choi, Myung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.267-271
    • /
    • 2011
  • The insulating characteristics and temperature rise behaviors of porcelain suspension insulators were investigated. The testing insulators had used in the distribution systems normally and were sampled. Firstly, leakage current was measured and its impedance was calculated. The leakage current of good insulators is 0.2 mA and its impedance is 66 $M{\Omega}$. The worse insulators have lower impedance and the insulators having below 15 $M{\Omega}$ take place flashover at the high frequency voltage flashover test. Secondly, the temperature rise characteristics were analyzed depending on leakage current and its impedance. Surface temperature of insulators was measured for 30 minutes and until its saturation after voltage was applied. The temperature rise of insulators having 15 $M{\Omega}$ is about $14.5^{\circ}C$ above the ambient temperature. Lastly, the heating behaviors of 3 insulators in a string was analyzed. Any insulator in the string does not generate heat so far as it has at least one sound insulator. On the other hand, all the insulators in the string are bad if the string have any heating insulator.

Insulation Characteristics for a Conduction-Cooled HTS SMES

  • Cheon H.G.;Baek S.M.;Seong K.C.;Kim H.J;Kim S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.2
    • /
    • pp.39-43
    • /
    • 2005
  • Toward the practical applications, on operation of conduction-cooled HTS SMES at temperatures well below 77 K should be investigated, in order to take advantage of a greater critical current density of HTS and considerably reduce the size and weight of the system. Recently, research and development concerning application of the conduction-cooled HTS SMES that is easily movement are actively progressing in Korea. Electrical insulation under cryogenic temperature is a key and an important element in the application of this apparatus. However, the behaviors of insulators for cryogenic conditions in air or vacuum are virtually unknown. Therefore, this work focuses on the breakdown and flashover phenomenology of dielectrics exposed in vacuum for temperatures ranging from room temperature to cryogenic temperature. Firstly, we summary the insulation factors of the magnet for HTS SMES. And a surface flashover as well as volume breakdown in air and vacuum has been investigated with two kind insulators. Finally, we will discuss applications for the HTS SMES including aging studies on model coils exposed in vacuum at cryogenic temperature.