• Title/Summary/Keyword: surface fibers

Search Result 1,084, Processing Time 0.031 seconds

Numerical Implementation of Modified Coulomb-Mohr Yield Criterion for Anisotropic and Asymmetric Materials

  • Lee Myoung-Gyu;Kim Ji-Hoon;Ryou Han-Sun;Chung Kwan-Soo;Youn Jae-Ryoun;Kang Tae-Jin
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.276-285
    • /
    • 2006
  • Development and numerical implementation for an elastoplastic constitutive model for anisotropic and asymmetric materials are presented in this paper. The Coulomb-Mohr yield criterion was modified to consider both the anisotropic and asymmetric properties. The modified yield criterion is an isotropic function of the principal values of a symmetric matrix which is linearly transformed from the Cauchy stress space. In addition to the constitutive equation, the numerical treatment for the singularity in the vertex region of yield surface and stress integration algorithm based on elastoplasticity were presented. In order to assess the accuracy of numerical algorithm, isoerror maps were considered. Also, extension of a strip with a circular hole was simulated and results compared with those obtained using the (smooth) Mises yield criterion to validate stress output for a complex stress state.

Modeling shotcrete mix design using artificial neural network

  • Muhammad, Khan;Mohammad, Noor;Rehman, Fazal
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.167-181
    • /
    • 2015
  • "Mortar or concrete pneumatically projected at high velocity onto a surface" is called Shotcrete. Models that predict shotcrete design parameters (e.g. compressive strength, slump etc) from any mixing proportions of admixtures could save considerable experimentation time consumed during trial and error based procedures. Artificial Neural Network (ANN) has been widely used for similar purposes; however, such models have been rarely applied on shotcrete design. In this study 19 samples of shotcrete test panels with varying quantities of water, steel fibers and silica fume were used to determine their slump, cost and compressive strength at different ages. A number of 3-layer Back propagation Neural Network (BPNN) models of different network architectures were used to train the network using 15 samples, while 4 samples were randomly chosen to validate the model. The predicted compressive strength from linear regression lacked accuracy with $R^2$ value of 0.36. Whereas, outputs from 3-5-3 ANN architecture gave higher correlations of $R^2$ = 0.99, 0.95 and 0.98 for compressive strength, cost and slump parameters of the training data and corresponding $R^2$ values of 0.99, 0.99 and 0.90 for the validation dataset. Sensitivity analysis of output variables using ANN can unfold the nonlinear cause and effect relationship for otherwise obscure ANN model.

Removal of volatile organic compounds from air using activated carbon impregnated cellulose acetate electrospun mats

  • Patil, Kashyap;Jeong, Seonju;Lim, Hankwon;Byun, Hun-Soo;Han, Sangil
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.600-607
    • /
    • 2019
  • Volatile organic compounds (VOCs) are released from various sources and are unsafe for human health. Porous materials are promising candidates for the adsorption of VOCs owing to their increased ratio of surface area to volume. In this study, activated carbon (AC) impregnated cellulose acetate (CA) electrospun mats were synthesized using electrospinning for the removal of VOCs from the air mixture of ACs, and CA solution was electrospun at different proportions (5%, 10%, and 15%) in a single nozzle system. The different AC amounts in the electrospun mats were distributed within the AC fibers. The adsorption capacities were measured for acetone, benzene, and dichloromethane, using quartz crystal microbalance. The results elicited an increasing adsorption capacity trend as a function of the impregnation of ACs in the electrospun mats, while their capacities increased as a function of the AC concentration. Dichloromethane resulted in a faster adsorption process than acetone and benzene owing to its smaller molecular size. VOCs were desorbed with the N2 gas purging, while VOCs were adsorbed at higher temperatures owing to the increased vapor pressures. The adsorption analysis using Dubinin-Astakhov equation showed that dichloromethane is more strongly adsorbed on mats.

Filament Band Winding Simulation for Fiber Reinforced Cylindrical Pressure Vessels (FRP의 원통형 압력 용기제작을 위한 필라멘트 밴드의 감김 시뮬레이션)

  • Yun, Jaedeuk;Fu, Jianhui;Jung, Yoongho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.1
    • /
    • pp.19-28
    • /
    • 2014
  • The filament winding method is widely used to manufacture products of fiber reinforced plastics (FRP), such as high pressure vessels, launch tubes and pipes. For reducing winding time, the method of winding by filament band which consists of several filament fibers is used. NC winding machine is used for precise winding and NC path is needed. Before filament winding, users should verify that winding path which presented by a line is appropriate by filament winding simulation. Also, the used length of each filament is different. So, if the peak filament exhausted, it causes to stop manufacturing. In this research, we developed software which visualizes 3D graphic of filament band winding path and simulates winding process on real time. And we proposed algorithm about calculation of each filament usage. We use geodesic equation for generating filament band surface and calculating the usage length of each filament.

Ganglion Cyst of the Sternoclavicular Joint in an Adult

  • Kim, Nam Gyun;Lim, Yun Sub;Choi, Jae Hoon;Kim, Jun Sik;Lee, Kyung Suk
    • Archives of Craniofacial Surgery
    • /
    • v.15 no.1
    • /
    • pp.40-42
    • /
    • 2014
  • Ganglion cysts are most common on the dorsum of the hand or wrist, but they can occur in any part of the body. There have been few papers reporting ganglion cysts originating from the sternoclavicular joint, with most of these cases developing in children. A 76-year-old woman was referred to our department because of a painless mass over the right sternoclavicular joint. The mass was excised along with the portion of the sternoclavicular joint capsule surrounding the stalk. Histopathologic examination showed the cyst wall to be composed of compressed collagen fibers without evidence of an epithelial or synovial lining, which was consistent with ganglion cyst. To our knowledge, this is the first report of such a cyst in an adult. We consider this to be a useful report for surgeons that treat mass lesions occurring in almost any part of the body surface.

Compression failure and fiber-kinking modeling of laminated composites

  • Ataabadi, A. Kabiri;Ziaei-Rad, S.;Hosseini-Toudeshky, H.
    • Steel and Composite Structures
    • /
    • v.12 no.1
    • /
    • pp.53-72
    • /
    • 2012
  • In this study, the physically-based failure models for matrix and fibers in compression and tension loading are introduced. For the 3D stress based fiber kinking model a modification is proposed for calculation of the fiber misalignment angle. All of these models are implemented into the finite element code by using the advantage of damage variable and the numerical results are discussed. To investigate the matrix failure model, purely in-plane transverse compression experiments are carried out on the specimens made by Glass/Epoxy to obtain the fracture surface angle and then a comparison is made with the calculated numerical results. Furthermore, shear failure of $({\pm}45)_s$ model is investigated and the obtained numerical results are discussed and compared with available experimental results. Some experiments are also carried out on the woven laminated composites to investigate the fracture pattern in the matrix failure mode and shown that the presented matrix failure model can be used for the woven composites. Finally, the obtained numerical results for stress based fiber kinking model and improved ones (strain based model) are discussed and compared with each other and with the available results. The results show that these models can predict the kink band angle approximately.

A Safety Study on the Stress Characteristics of a Composite Pressure Cylinder for a Use of 70MPa Hydrogen Gas Vehicle (70MPa 수소가스차량용 복합소재 압력용기의 응력특성에 관한 안전성 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • This paper presents a stress safety of a composite pressure cylinder for a hydrogen gas vehicle. The composite pressure cylinder in which is composed of an aluminum liner and carbon fiber wound layers contains 104 liter hydrogen gas, and is compressed by a filling pressure of 70 MPa. The FEM computed results are analyzed based on the US DOT-CFFC basic requirement for a hydrogen gas cylinder and KS B ISO specification. The FEM results indicate that the stress, 255.2 MPa of an aluminum liner is sufficiently low compared with that of 272 MPa, which is 95% level of a yield stress for aluminum. Also, the composite layers in which are wound on the surface of an aluminum cylinder are safe because the stress ratios from 3.46 to 3.57 in hoop and helical directions are above 2.4 for a minimum safety level. The proposed composite pressure cylinder wound by carbon fibers is useful for 70 MPa hydrogen gas vehicles.

Mechanical Behaviors and Characterization of Electrospun Polysulfone/Polyurethane Blend Nonwovens

  • Cha Dong-Il;Kim Kwan-Woo;Chu Gong-Hee;Kim Hak-Yong;Lee Keun-Hyung;Bhattarai Narayan
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.331-337
    • /
    • 2006
  • In the present study we investigated the relationship between the morphology and mechanical properties of electrospun polysulfone (PSF)/polyurethane (PU) blend nonwovens, by using the electrospinning process to prepare three types of electrospun nonwovens: PSF, PU and PSF/PU blends. The viscosity, conductivity and surface tension of the polymer solutions, were measured by rheometer, electrical conductivity meter and tensiometer, respectively. The electrospun PSF/PU blend nonwovens were characterized by scanning electron microscopy (SEM) and with a universal testing machine. The SEM results revealed that the electrospun PSF nonwoven had a structure consisting of cross-bonding between fibers, whereas the electrospun PU nonwoven showed a typical, point-bonding structure. In the electrospun PSF/PU blend nonwovens, the exact nature of the point-bonding structure depended on the PU contents. The mechanical properties of the electrospun PSF/PU blend nonwoven were affected by the structure or the morphology. With increasing PU content, the mechanical behaviors, such as Young's modulus, yield stress, tensile strength and strain, of the electrospun PSF/PU blend nonwovens were by up to 80%.

Application of Transglutaminase for Hair Revitalization (모발 개선을 위한 Transglutaminase의 적용)

  • Kim, Yun Seog;Park, Su Jin
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • The use of protein-crosslinking enzyme, transglutaminase, as a biocatalyst in the processing of hair offers a variety of exciting and realistic possibilities which include improving the rigidity of hair fibers. Among the transglutaminases from many different living organisms, the microbial enzyme prepared from Streptomyces mobaraensis, significantly increased the tensile strength of hair by 15.64% compared to a control when it was applied to damaged hair. This indicates that transglutaminase can restore the negative effects of washing hair with shampoo. Also transglutaminase improved the characteristics of hair surface, which could be useful for increase of luster and reduction of friction force of hair surfaces.

Blood Compatibility of Hollow Fiber Membranes Treated by Plasma Polymerization (플라즈마 중합 처리된 중공사 막의 혈액 적합성)

  • Lee, Sam-Cheol;Kwon, O-Sung
    • Membrane Journal
    • /
    • v.15 no.3
    • /
    • pp.233-240
    • /
    • 2005
  • Surface modification of polypropylene hollow fiber membranes was performed in order to develop blood-compatibility biomaterials for use in the blood contacting surfaces and oxygenation membranes of a lung assist device (LAD), important medical device even more useful. Blood compatibility of materials was determined by using anticoagulation blood and evaluating formation of blood clots on their surfaces as well as activation of plasma coagulation cascade, platelet adhesion, and aggregation. It was verified that the number of platelets on the silicone coated fibers was significantly lower than that on untreated fiber membrane, indicating improved blood compatibility. It was also found that the polypropylene hollow fiber membranes using plasma treatment exhibited suppression of complement activation in blood compatibility test.