• Title/Summary/Keyword: surface fibers

Search Result 1,081, Processing Time 0.026 seconds

Influence of Textural Structure by Heat-treatment on Electrochemical Properties of Pitch-based Activated Carbon Fiber (열처리 온도에 의한 피치계 활성탄소섬유의 기공구조 변화가 전기화학적 특성에 미치는 영향)

  • Kim, Kyung Hoon;Park, Mi-Seon;Jung, Min-Jung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.598-603
    • /
    • 2015
  • In this study, electrochemical properties of pitch-based activated carbon fibers (ACFs) were investigated by different heat-treatment temperature of the pitch-based ACFs in order to improve the specific capacitance of electric double-layer capacitor (EDLC). The ACFs were prepared by different heat-treatment temperatures of 1050 and $1450^{\circ}C$, after activation with 4 M KOH at $800^{\circ}C$ using stabilized pitch fiber. The specific surface area of prepared ACFs increased from $828m^2/g$ to $987m^2/g$, also the micropore and mesopore volumes of prepared ACFs were increased. These results because pore was produced by desorbing oxygen and hydrogen elements within the ACFs, and pore size was increased by contraction ACFs by heat-treatment process. Because of the porous properties, the specific capacitance was increased from 73 F/g to 119 F/g using cyclic voltammetry with 1 M $H_2SO_4$ at scan rates of 5 mV/s.

Preliminary Study of a New Extracorporeal Membrane Oxygenator Development When Using Pulsatile Flow

  • Lee, Sa-Ram;Lee, Kyung-Soo;Jung, Jae-Hoon;Mun, Cho-Hay;Min, Byoug-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.387-391
    • /
    • 2007
  • An oxygenator is a very important artificial organ and widely used for patients with lung failure or during open heart surgery. Although an oxygenator has been widely studied worldwide to enhance its efficiency, studies on oxygenators, in particular when using a pulsatile blood flow, are domestically limited. Therefore, a new oxygenator was developed in the lab and animal experimental results are described in the paper. The oxygenator is composed of polycarbonate housing and polypropylene hollow fibers. It has a total length of 400 mm and a surface area of $1.7 m^2$. The animal experiment lasted for 4 hours. The blood flow rate was set to 2 L/min and a pulsatile blood pump, T-PLS (Twin-Pulse Life Support), was used. Samples were drawn at the oxygenator's inlet and outlet. The total hemoglobin (Hb), saturation oxygen ($sO_2$), and partial oxygen pressure ($pO_2$), partial $CO_2$ pressure ($pCO_2$), and plasma bicarbonate ion concentration ($HCO_3^-$) were measured. The oxygen and carbon dioxide transfer rates were also calculated based on the experimental data in order to estimate the oxygenator's gas transfer efficiency. The oxygen and carbon dioxide transfer rates were $16.4{\pm}1.58$ and $165.7{\pm}10.96 mL/min$, respectively. The results showed a higher carbon dioxide transfer rate was achieved with the oxygenator. Also, the mean inlet and outlet blood pressures were 162.79 and 137.92 mmHg, respectively. The oxygenator has a low pressure drop between its inlet and outlet. The aim of own preliminary study was to make a new oxygenator and review its performance when applying a pulsatile blood pump thus, confirming the possibility of a new oxygenator suitable for pulsatile flow.

Scientific Evaluation of 16-l9th Century Historic Paper Artefacts from Chungbuk National University Museum (충북대학교 박물관소장 16-19세기 지류문화재의 특성)

  • Wazny, Agnieszka Helman;Wazny, Tomasz;Choi, Tae-Ho;Cho, Nam-Seok
    • Journal of Conservation Science
    • /
    • v.16 s.16
    • /
    • pp.27-38
    • /
    • 2004
  • This study was performed to characterize historical paper artefacts from 16th to 19th century from Chungbuk National University Museum (CNUM) in Korea. In order to know the fiber composition, surface features and fiber orientation in historic paper artefacts, LM, SEM and EDX analysis observations were applied. Based on tested results, it was concluded that Korean historic papers from 16 to 19th century were made of paper mulberry fibers called dak, which had 2.79-16.03 m of fiber lengthes and $4.5-26{\mu}m$ of lumen widthes, and they were relatively well preserved. According to EDX analysis, the examined papers differed to the contents of inorganics. High contents of S, Si, Ca, P and Al refer to use fillers, such as gypsum, clay and talc, for paper artifacts. In particular, half of samples contained some amounts of S, Cl and Fe. Since those inorganics might be potentially harmful for the paper permanency, therefore it should be considered special restoration measures from the preservation point of view.

  • PDF

Combined Effects of High Pressure and Heat on Shear Value and Histological Characteristics of Bovine Skeletal Muscle

  • Rusman, H.;Gerelt, B.;Yamamoto, S.;Nishiumi, T.;Suzuki, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.994-1001
    • /
    • 2007
  • Changes in shear force value, transverse sections, myofibrils and intramuscular connective tissue of bovine skeletal muscle exposed to the combination of high-pressure up to 400 MPa and heat (30 and $60^{\circ}C$) were studied. The shear force value decreased by pressure-heat treatment up to 200 MPa at 30 and $60^{\circ}C$, and then slightly increased over 200 MPa at $30^{\circ}C$. Shear force values of treated muscles were lower than those of untreated ones. Gaps between muscle fibers in the untreated muscle were a little clear, and then they became very clear in the treated muscles up to 200 MPa at 30 and $60^{\circ}C$. However, the gaps reduced significantly over 200 MPa at $30^{\circ}C$. The remarkable rupture of I-band and loss of M-line materials progressed in the myofibrils with increasing pressure applied. However, degradation and loss of the Z-line in myofibrils observed in the muscle treated at $60^{\circ}C$ was not apparent in the muscle treated at $30^{\circ}C$. The length of the sarcomere initially contracted by pressure-heat treatment of 100 MPa at $30^{\circ}C$ seemed to have recovered with increase of the pressure up to 400 MPa. In the muscle treated at $60^{\circ}C$, the length of sarcomere gradually decreased with increase of the pressure up to 400 MPa. In the treated muscles, changes in the honeycomb-like structure of endomysium were observed and accelerated with increase of the pressure. A wavy appearance clearly observed at the inside surface of endomysium in the untreated muscles gradually decreased in the treated muscles with increase of the pressure. Tearing of the membrane was observed in the muscles treated over 150 MPa at $30^{\circ}C$, as observed in the sample pressurized at 100 MPa at $60^{\circ}C$. The roughening, disruption and fraying of the membrane were observed over 200 MPa at $60^{\circ}C$. From the results obtained, the combination of high-pressure and heat treatments seems to be effective to tenderize tough meat. The shear force value may have some relationship with deformation of intramuscular connective tissue and myofibrils.

Fire Test of Fiber Cocktail Reinforced High Strength Concrete Columns without Loading (섬유혼입공법을 적용한 고강도콘크리트 기둥의 비재하 내화시험)

  • Youm, Kwang-Soo;Jeon, Hun-Kyu;Kim, Heung-Youl
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.465-471
    • /
    • 2009
  • To prevent the explosive spalling of the high strength concrete and control the rise of temperature in the steel rebar during fire, a fiber cocktail method has been proposed simultaneously with the use of polypropylene and steel fiber. After applying the fiber cocktail (polypropylene and steel fibers) into the mixture of high strength concrete with a compressive strength of between 40 and 100 MPa and evaluating the thermal properties at elevated temperatures, the fire test was carried out on structural members in order to evaluate the fire resistance performance. Two column specimens were exposed to the fire without loading for 180 minutes based on the standard curve of ISO-834. No explosive spalling has been observed and the original color of specimen surface was changed to light pinkish grey. The inner temperature of concrete dropped rapidly starting from 60mm deep. After 60 minutes of exposure to the fire, the temperature gradient of fiber cocktail reinforced high strength concrete was measured as 2.2oC/mm, which is approximately 5 times less than that of normal concrete. The final temperatures of steel rebar after 180 minutes of fire test resulted in 488.0oC for corner rebar, 350.9oC for center rebar, and 419.5oC for total mean of steel rebar. The difference of mean temperature between corner and center rebar was 137.1oC The tendency of temperature rise in concrete and steel rebar changed between 100oC and 150oC The cause of decrease in temperature rise was due to the water vaporization in concrete, the lower temperature gradient of the concrete with steel and polypropylene fiber cocktails, the moisture movement toward steel rebars and the moisture clogging.

A Study on Estimation of Numbers of Motor Unit related to the Widths and Distribution of Endplate in Neuromuscular Junction (신경근육 접합부의 종판 폭과 분포에 따른 운동단위 수의 추정에 관한 연구)

  • Lee, Ho-Yong;Kim, Duck-Young;Park, Jung-Ho;Jung, Chul-Ki;Kim, Sung-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.81-92
    • /
    • 2011
  • In this paper, a new method to estimate the number of MU (motor unit) related to the widths and distribution of end plate in NMJ (neuromuscular junction) of biceps brachii is proposed by varying muscle parameter statistically in EMG model. This work is done by designing MU-simulator and EPZ-simulator. The proposed method was compared with the results of previous researchers. The proposed MU-simulator generates SMUAP (single motor unit action potential) and CMAP (compound muscle action potential) signal similar to detected SMUAP and CMAP signal obtained from muscle. The EPZ-simulator estimate the numbers of MU by varying the widths and distribution of end plate in neuromuscular junction of muscle. The results shows that the numbers of MU was estimated about 450 ea. and muscle fibers was about 340 ea., end plate widths was about 6 mm, and end plate was randomly distributed. The proposed method may be comparable with the method of anatomical studies.

THE EFFECT OF RESIDUAL PERIODONTAL LIGAMENT ON ALVEOLAR BONE REMODELING OF EXTRACTION SOCKETS IN RATS (백서 치아 발거후 잔존 치주인대가 발치와의 치조골 재건에 미치는 영향)

  • Cho, Seong-Hoon;Herr, Yeek;Park, Joon-Bong;Lee, Man-Sup;Kwon, Young-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.3
    • /
    • pp.703-719
    • /
    • 1995
  • The purpose of this study was to observe the effects of the periodontal ligament on the healing and the formation of alveolar bone in the extraction socket, when this ligament had artificially remained in the socket during the tooth removal. Twenty rats aged 4 weeks were used and devided into the control groups (10) and the experimental groups (10) in this study. The maxillary right and left first molars were extracted in both groups. In the experimental groups the periodontal ligament was remained in the extraction sockets using 0.4% ${\beta}-aminopropionitrile$, and in the control the periodontal ligament was completely removed by curettage. At 1, 3, 5, 7 and 14 days after the tooth extraction, rats in both groups were serially sacrificed. And the specimens were prepared with Hematoxylin-Eosin stain for the light microscopic evaluation. The results of this study were as follows ; 1. On 1 day, the periodontal ligament was only found in the extraction socket walls of the experimental groups, and there was not the distinguishable difference between the control and the experimental groups. 2. On 3 days, there were more collagen fibers and the appearance of higher cellular density in the experimental groups than in the control. And the cells and collagen of the periodontal ligament were so actively proliferated and synthesized that invaded into the connective tissue of the extraction sockets in the experimental groups. 3. In the experimental groups, the trabecular bone was formed on the basal and lateral bone surface on 5 days. However, there was not the new bone forming appearance in the control groups at this time. 4. On 7 days, the trabecular bone was formed in the control groups. 5. On 14 days, the extraction sockets were almost entirely filled with the bony trabeculae in both groups. But, compared to the control group, the experimental groups showed the prominent differences in the amount & the density of the new bone formed. In conclusion, it was suggested that the residual periodontal ligament tissue in the extraction socket will play a major role as the important cell source in the healing and the new bone formation of the extraction socket.

  • PDF

The Environmental Hazard Assessment of Siting Restricted Industries from Industrial Complex in Rural Area Applied by Chemical Ranking and Scoring System (화학적 등급화기법을 적용한 농공단지 입주제한업종의 환경유해성 평가)

  • Hong, Sang-Pyo
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.6
    • /
    • pp.549-560
    • /
    • 2015
  • The priorities of siting restriction was derived from quantification of environmental hazard according to industrial classification based on 'Chemical Ranking and Scoring System(CRS)' which is handling the discharge characteristics of 31 industrial classifications regulated from locating at 'Industrial Complex in Rural Area(ICRA)'. CRS that is utilizing the data of 'Pollutant Release and Transfer Registers(PRTR)' is applied to determine human health risk and ecological risk which are calculated by discharged amount and materials $LC_{50}$ according to water, soil and air media based on industrial classification. From this process, exposure assessment and toxicity assessment for integrating the adverse environmental impact and the mitigation effect of environmental risk according to the development of environmental technologies into establishing the rational landuse management method for the 31 industrial classifications regulated from locating at ICRA was analyzed. From the assessment result of the siting restriction removal at ICRA for 31 industrial classifications, based on 2012 year reference 6 industries that includes Manufacture of Guilt Coloration Surface Processing Steel Materials, Manufacture of Biological Product, Manufacture of Smelting Refining and Alloys of Copper, Dyeing and Finishing of Fibers and Yarns, Manufacture of Other Basic Iron and Steel n.e.c., Rolling Drawing and Extruding of Non-ferrous Metals n.e.c. are calculated as having relatively lower environmental hazards, thus it is judged that the siting restriction mitigation at ICRA is possible for the 6 industrial classifications that are not discharging the specific hazardous water contaminants during manufacturing process.

Effect of The Addition of Various Cellulose Nanofibers on The Properties of Sheet of Paper Mulberry Bast Fiber (각종 셀룰로오스 나노섬유의 첨가가 닥나무 인피섬유 시트의 특성에 미치는 영향)

  • Han, Song-Yi;Park, Chan-Woo;Kim, Bo-Yeon;Lee, Seung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.730-739
    • /
    • 2015
  • Various cellulose nanofibers (CNF) with different morphology and chemical properties were prepared for the reinforcement of sheet of paper mulberry bast fiber. Lignocellulose nanofiber (LCNF), Holocellulose nanofiber (HCNF), alkali-treated HCNF (AT-HCNF), TEMPO-oxidated nanofiber (TEMPO-NF) and cellulose nanocrystal (CNF) were prepared and their addition effect on the properties of sheet of paper mulberry bast fiber were investigated. Air permeability, surface smoothness, and tensile properties were improved by increasing CNF addition. Its improvement may be due to the CNF deposited between and on paper mulberry bast fibers, which was confirmed by SEM observation.

Manufacture of Calligraphy-carving Artworks Using Carbonized Board (탄화보드를 이용한 서각작품 제작)

  • Park, Sang-Bum;Chong, Song-Ho;Byeon, Hee-Seop;Ryu, Hyun-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.185-190
    • /
    • 2010
  • This study was focused to make a wooden plate that is engraved with writings or pictures on the medium density fiberboard (MDF), and then to produce a calligraphy-carving artwork by carbonization of the carved MDF. The external appearances and anatomical changes were investigated on the carbonized MDF and aesthetic characteristics was also discussed. No split and no twist were found after the carbonization (at $850^{\circ}C$) of the calligraphy-encarved MDF, shrinkages of the MDF were observed with portions of 21.8% in length, 18.8% in width and 43.5% in thickness, and 69.2% of weight loss with density decrease of 14.8% were observed as well. From the observation of the carbonized board by a scanning electron microscope, specific phenomena were found: the adhesives, surrounding the fiber's surface and pits, were carbonized, the woody fibers were changed smoothly, the pits were opened, the fiber' size was uniformized, and the organization was compacted. By the combination of handmade calligraphy-woodcarving and crack-free carbonizing methods, it was able to find a new method for manufacture carbonized calligraphy-woodcarving artwork. It is concluded that the calligraphy-woodcarving artwork using carbonized board can be a new access for the eco-friendly art that has the advantage of the functionality of charcoal and the aesthetic of calligraphy-woodcarving simultaneously.