• Title/Summary/Keyword: surface energy effects

Search Result 1,241, Processing Time 0.033 seconds

Comparison of aerodynamic loading of a high-rise building subjected to boundary layer and tornadic winds

  • Ashrafi, Arash;Chowdhury, Jubayer;Hangan, Horia
    • Wind and Structures
    • /
    • v.34 no.5
    • /
    • pp.395-405
    • /
    • 2022
  • Tornado-induced damages to high-rise buildings and low-rise buildings are quite different in nature. Tornado losses to high-rise buildings are generally associated with building envelope failures while tornado-induced damages to low-rise buildings are usually associated with structural or large component failures such as complete collapses, or roofs being torn off. While studies of tornado-induced structural damages tend to focus mainly on low-rise residential buildings, transmission towers, or nuclear power plants, the current rapid expansion of city centers and development of large-scale building complexes increases the risk of tornadoes impacting tall buildings. It is, therefore, important to determine how tornado-induced load affects tall buildings compared with those based on synoptic boundary layer winds. The present study applies an experimentally simulated tornado wind field to the Commonwealth Advisory Aeronautical Research Council (CAARC) building and estimates and compares its pressure coefficient effects against the Atmospheric Boundary Layer (ABL) flow field. Simulations are performed at the Wind Engineering, Energy and Environment (WindEEE) Dome which is capable of generating both ABL and tornadic winds. A model of the CAARC building at a scale of 1:200 for both ABL and tornado flows was built and equipped with pressure taps. Mean and peak surface pressures for TLV flow are reported and compared with the ABL induced wind for different time-averaging. By following a compatible definition of the pressure coefficients for TLV and ABL fields, the resulting TLV pressure field presents a similar trend to the ABL case. Also, the results show that, for the high-rise building model, the mean and 3-sec peak pressures are larger for the ABL case compared to the TLV case. These results provide a way forward for the code implementation of tornado-induced pressures on high-rise buildings.

A Study on Rinsing Effects of Sn Sensitization and Pd Activation Processes for Uniform Electroless Plating (무전해 도금에서 Sn 민감화와 Pd 활성화 공정의 세척 효과에 대한 연구)

  • Seong-Jae, Jeong;Mi-Se, Chang;Jae-Won, Jeong;Sang-Sun, Yang;Young-Tae, Kwon
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.511-516
    • /
    • 2022
  • Electroless plating is widely utilized in engineering for the metallization of insulator substrates, including polymers, glass, and ceramics, without the need for the application of external potential. Homogeneous nucleation of metals requires the presence of Sn-Pd catalysts, which significantly reduce the activation energy of deposition. Therefore, rinsing conducted during Sn sensitization and Pd activation is a key variable for the formation of a uniform seed layer without the lack or excess of catalysts. Herein, we report the optimized rinsing process for the functionalization of Sn-Pd catalysts, which enables the uniform FeCo metallization of the glass fibers. Rinsing enables good deposition of the FeCo alloy because of the removal of excess catalysts from the glass fiber. Concurrently, excessive rinsing results in a complete removal of the Sn-Pd nucleus. Collectively, the comprehensive study of the proposed nanomaterial preparation and surface science show that the metallization of insulators is a promising technology for electronics, solar cells, catalysts, and mechanical parts.

Hydrodynamic Analysis of Two-dimensional Floating Breakwater in Weakly Nonlinear Waves (약 비선형 파랑에 대한 연직 2차원 부방파제의 동수역학적 해석)

  • Lee, Jeongwoo;Cho, Woncheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.539-549
    • /
    • 2006
  • The performance of a pontoon-type floating breakwater (FB) is investigated numerically with the use of a second-order time domain model. The model has been developed based on potential theory, perturbation theory and boundary element method. This study is focused on the effects of weakly nonlinear wave on the hydrodynamic characteristics of the FB. Hydrodynamic forces, motion responses, surface elevation, and wave transmission coefficient around the floating breakwater are evaluated for various wave and geometric parameters. It is shown that the second-order wave component is of significant importance in calculating magnitudes of the hydrodynamic forces, mooring forces and the maximum response of a structure. The weak non-linearity of incident waves, however, can have little influence on the efficiency of the FB. From numerical simulations, the ratio of draft and depth, the relationship of wave number and width are presented for providing an effective means of reducing wave energy.

Effect of Ball Milling Conditions on the Microstructure and Dehydrogenation Behavior of TiH2 Powder (볼 밀링 조건이 TiH2 분말의 미세조직과 탈수소화 거동에 미치는 영향)

  • Ji Young Kim;Eui Seon Lee;Ji Won Choi;Youngmin Kim;Sung-Tag Oh
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.132-136
    • /
    • 2024
  • This study investigated the effects of revolution speed and ball size in planetary milling on the microstructure and dehydrogenation behavior of TiH2 powder. The particle size analysis showed that the large particles present in the raw powder were effectively refined as the revolution speed increased, and when milled at 500 rpm, the median particle size was 1.47 ㎛. Milling with a mixture of balls of two or three sizes was more effective in refining the raw powder than milling with balls of a single size. A mixture of 3 mm and 5 mm diameter balls was the optimal condition for particle refinement, and the measured median particle size was 0.71 ㎛. The dependence of particle size on revolution speed and ball size was explained by changes in input energy and the number of contact points of the balls. In the milled powder, the endothermic peak measured using differential thermal analysis was observed at a relatively low temperature. This finding was interpreted as the activation of a dehydrogenation reaction, mainly due to the increase in the specific surface area and the concentration of lattice defects.

Experimental Assessment of Microwave Sintering Efficiency Based on System Configuration and Dwell Time (시스템 구성 및 유지시간에 따른 마이크로파 소결 효율 평가)

  • Lee, Jangguen;Jin, Hyunwoo;Kim, Young-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.81-90
    • /
    • 2024
  • With the discovery of energy resources such as water ice on the Moon's surface, the Moon is attracting attention as an outpost for deep space exploration. As the concept of in situ resource utilization (ISRU) for establishing sustainable deep space exploration outposts gains traction, there is an increasing demand for technology to solidify lunar regolith as an in situ resource. In this study, sintered blocks were manufactured using a hybrid microwave sintering furnace. The effects of system configuration and dwell time on the microwave sintering efficiency were assessed. The results indicated that the composition of the SiC susceptor and its distance from the magnetron influenced the manufacturing of homogeneous sintered blocks. Additionally, varying the dwell time at a sintering temperature of 1,080℃ under optimal conditions revealed that exceeding the threshold dwell time caused the sintered blocks to become heterogeneous, thereby reducing the sintering efficiency.

MULTISTEP HEAT-TREATMENT EFFECTS ON ELECTROSPUN Nd-Fe-B-O NANOFIBERS

  • EUN JU JEON;NU SI A. EOM;JIMIN LEE;BIN LEE;HYE MI CHO;JI SUN ON;YONG-HO CHOA ;BUM SUNG KIM
    • Archives of Metallurgy and Materials
    • /
    • v.63 no.3
    • /
    • pp.1433-1437
    • /
    • 2018
  • Neodymium-Iron-Boron (Nd-Fe-B) magnets are considered to have the highest energy density, and their applications include electric motors, generators, hard disc drives, and MRI. It is well known that a fiber structure with a high aspect ratio and the large specific surface area has the potential to overcome the limitations, such as inhomogeneous structures and the difficulty in alignment of easy axis, associated with such magnets obtained by conventional methods. In this work, a suitable heat-treatment procedure based on single-step and multistep treatments to synthesize sound electrospun Nd-Fe-B-O nanofibers of Φ572 nm was investigated. The single-step heat-treated (directly heat-treated at 800℃ for 2 h in air) samples disintegrated along with the residual organic compounds, whereas the multistep heat-treated (sequential three-step heat-treated including three steps;: dehydration (250℃ for 30 min in an inert atmosphere), debinding (650℃ for 30 min in air), and calcination (800℃ for 1 h in air)) fibers maintained sound fibrous morphology without any organic impurities. They could maintain such fibrous morphologies during the dehydration and debinding steps because of the relatively low internal pressures of water vapor and polymer, respectively. In addition, the NdFeO3 alloying phase was dominant in the multistep heat-treated fibers due to the removal of barriers to mass transfer in the interparticles.

Effects of Local Cooling and Root Pruning on Budding and Local Heating on Heating Energy Consumption in Forcing Cultivation of Strawberry (딸기 촉성재배 시 국소 냉방 및 단근처리와 국소난방이 화방출뢰와 난방에너지소비에 미치는 영향)

  • Kwon, Jin Kyung;Kang, Suk Won;Paek, Yee;Moon, Jong Pil;Jang, Jae Kyung;Oh, Sung Sik
    • Journal of Bio-Environment Control
    • /
    • v.28 no.1
    • /
    • pp.46-54
    • /
    • 2019
  • Experiments of local cooling and heating on crown and root zone of forcing cultivation of strawberry 'Seolhyang' using heat pump and root pruning before planting were conducted. During the daytime, the crown surface temperature of the crown local cooling treatment was maintained at $18{\sim}22^{\circ}C$. This is suitable for flower differentiation, while those of control and root zone local cooling treatment were above $30^{\circ}C$. Budding rate of first flower clusters and initial yields were in the order of crown local cooling, root zone local cooling and control in root pruning plantlet and non pruning plantlet, except for purchase plantlet. Those of root pruning plantlet were higher than those of non pruning plantlet. These trends were evident in the yield of the first flower cluster until February 14, 2018, and the effect of local cooling and root pruning decreased from March 9, 2018. The budding rates of the second flower cluster according to the local cooling and root pruning treatments were not noticeable compared to first flower cluster but showed the same tendency as that of first flower cluster. In the heating experiment, root zone local heating(root zone $20^{\circ}C$+inside greenhouse $5^{\circ}C$) and crown local heating(crown $20^{\circ}C$+inside greenhouse $5^{\circ}C$) saved 59% and 65% of heating fuel, respectively, compared to control(inside greenhouse $9^{\circ}C$). Considering the electric power consumption according to the heat pump operation, the heating costs were reduced by 55% and 61%, respectively.

Assessment of Carsington Dam Failure by Slope Stability and Dam Behavior Analyses (사면안정 해석과 댐 거동분석을 통한 Carsington Dam 파괴의 고찰)

  • 송정락;김성인
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.87-102
    • /
    • 1991
  • It has been reported that the failure of Carsington Dam in Eng1and occured due to the existence of a thin yellow clay layer which was not identified during the design work, and due to pre-existing shears of the clay layer. The slope stability analyses during the design work, which utilized traditional circular arc type failure method and neglected the existence of the clay layer, showed a safety factor of 1.4. However, the post-failure analyses which utilized translational failure mode considering the clay layer and the pre-existing shear deformation revealed the reduction of safety factor to unity. The post-failure analysis assumed 10。 inclination of the horizontal forces onto each slice based on the results of finite element analyses. In this paper, Bishop's simplified method, Janbu method, and Morgenstern-Price method were used for the comparison of both circular and translational failure analysis methods. The effects of the pre-existing shears and subsquent movement were also considered by varying the soil strength parameters and the pore pressure ratio according to the given soi1 parameters. The results showed factor of safefy 1.387 by Bishop's simplified method(STABL) which assumed circular arc failure surface and disregarding yellow clay layer and pre-failure material properties. Also the results showed factor of safety 1.093 by Janbu method(STABL) and 0.969 by Morgenstern-Price method(MALE) which assumed wedge failure surface and considerd yellow clay layer using post failure material properties. In addition, dam behavior was simulated by Cam-Clay model FEM program. The effects of pore pressure changes with loading and consolidation, and strength reduction near or at failure were also considered based on properly assumed stress-strain relationship and pore pressure characteristics. The results showed that the failure was initiated at the yellow clay layer and propagated through other zones by showing that stress and displacement were concentrated at the yel1ow clay layer.

  • PDF

Influence of the Increase of Dissolved $CO_2$ Concentration on the Marine Organisms and Ecosystems (해수중 용존 $CO_2$ 농도 증가가 해양생물 및 해양생태계에 미치는 영향: 국내외 사례 연구)

  • Lee, Jung-Suk;Lee, Kyu-Tae;Kim, Chan-Kook;Park, Gun-Ho;Lee, Jong-Hyeon;Park, Young-Gyu;Gang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.4
    • /
    • pp.243-252
    • /
    • 2006
  • Influence of the increasing carbon dioxide concentration in seawater on various marine organisms is assessed in this article with regard to the impacts of anthropogenic $CO_2$ introduced into surface or deep oceans. Recent proposals to sequester $CO_2$ in deep oceans arouse the concerns of adverse effects of increased $CO_2$ concentration on deep-sea organisms. Atmospheric introduction of $CO_2$ into the ocean can also acidify the surface water, thereby the population of some sensitive organisms including coral reefs, cocolithophorids and sea urchins will be reduced considerably in near future (e.g. in 2100 unless the increasing trend of $CO_2$ emission is actively regulated). We exposed bioluminescent bacteria and benthic amphipods to varying concentrations of $CO_2$ and also pH for a short period. The ${\sim}l.5$ unit decrease of pH adversely affected test organisms. However, amphipods were not influenced by decreasing pH when HCl was used for the seawater acidification. In this article, we reviewed the biological adverse effects of $CO_2$ on various marine organisms studied so for. Theses results will be useful to predict the potential risks of the increase of $CO_2$ concentrations in seawater due to the increase of atmospheric $CO_2$ emission and/or sequestration of $CO_2$ in deep oceans.

  • PDF

Synthesis of Artificial Zeolite from Fly Ash for Preparing Nursery Bed Soils and the Effects on the Growth of Chinese Cabbage (석탄회(石炭灰)를 이용한 육묘(育苗) 상토용(床土用) 인공(人工) 제올라이트의 제조와 배추 생육에 미치는 효과(效果))

  • Kim, Yong-Woong;Lee, Hyun-Hee;Yoon, Chung-Han;Shin, Bang-Sup;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.95-106
    • /
    • 1998
  • To reduce the environmental contamination and to utilize fly ash massively produced from the coal power plant every year, we synthesized the artificial zeolite using fly ash treated with alkaline, and then analyzed the mineralogical and morphological properties by X-ray, IR, and SEM. The amount of $NH_4{^+}$, $K^+$, and $H_2PO_4{^-}$ adsorbed by the fly ash and the artificial zeolite were determined with reaction time, amount of adsorbate used, ion concentrations. The results obtained from the pot experiments packed with the top soil, amended with granulated artificial zeolite which was made by treatment of 4% polyvinylalcohol, showed that CEC of the artificial zeolite was $257.7cmol^+kg^{-1}$, that was almost 36 times greater than that of fly ash. The ratio of $SiO_2/Al_2O_3$ decreased but the amount of Na increased. The physico-chemical properties analyzed by X-ray, IT, and SEM represented that the artificial zeolite synthesized had a similar morphological structure to that of the natural zeolite. The structures of the artificial zeolite had a significantly enlarged surface having a lot of pores, while the fly ash looked like spherical smooth shape with having not pores on the surface. Thus, the artificial zeolite was successfully synthesized. The results of adsorption isotherms of fly ash and artificial zeolite showed that the amount of $NH_4{^+}$, $K^+$, and $H_2PO_4{^-}$ adsorbed increased as the equilibrium concentration increased, while $NH_4{^+}$ was strongly adsorbed on the surface of fly ash and artificial zeolite than that of $K^+$. The most distinctive growth of Chinese cabbage was found from the top soil(NPK + soils + 20% of granulated artificial zeolite + 5% of compost). Therefore, we concluded that one of the most effective methods to effectively recycle a fly ash was to make the artificial zeolite as we did in this experiment.

  • PDF