• Title/Summary/Keyword: surface effects

Search Result 10,248, Processing Time 0.04 seconds

Effects of Surface Depression on Pool Convection and Oscillation in GTAW (GTA 용접에서 용융풀의 표면 변형이 유동과 진동에 미치는 영향)

  • 고성훈;최상균;유중돈
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.70-77
    • /
    • 1999
  • Surface depression in the arc welding is calculated numerically to analyze its influence on pool convection and oscillation. The magnitude of surface depression due to arc pressure on the stationary GTA pool surface is relatively small, and fluctuations of the surface and velocity are caused mainly by arc pressure. The inward flow on the surface due to the electromagnetic force and positive surface tension gradient acts to decrease surface depression. Surface depression appears to have minor effects on average flow velocity and thus pool geometry. Pool oscillation occurs due to surface vibration, and oscillation frequencies are affected mainly by the surface tension and pool width. The input parameters such as arc pressure and current have negligible effects on the oscillation frequency, and the surface tension gradient has limited effects. Since the oscillation frequency varies slightly according to penetration, pool oscillation for the partial penetration weld pool is applicable to monitor the pool width.

  • PDF

Dynamic modeling of embedded curved nanobeams incorporating surface effects

  • Ebrahimi, Farzad;Daman, Mohsen
    • Coupled systems mechanics
    • /
    • v.5 no.3
    • /
    • pp.255-267
    • /
    • 2016
  • To investigate the surface effects on vibration of embedded circular curved nanosize beams, nonlocal elasticity model is used in combination with surface properties including surface elasticity, surface tension and surface density for modeling the nano scale effect. The governing equations are determined via the energy method. Analytically Navier method is utilized to solve the governing equations for simply supported at both ends. Solving these equations enables us to estimate the natural frequency for circular curved nanobeam including Winkler and Pasternak elastic foundations. The results determined are verified by comparing the results by available ones in literature. The effects of various parameters such as nonlocal parameter, surface properties, Winkler and Pasternak elastic foundations and opening angle of circular curved nanobeam on the natural frequency are successfully studied. The results reveal that the natural frequency of circular curved nanobeam is significantly influenced by these effects.

Buckling influence of intermediate filaments with and without surface effects

  • Taj, Muhammad;Khadimallah, Mohamed A.;Ayed, Hamdi;Hussain, Muzamal;Mahmood, Shaid;Ahmad, Imtiaz
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.365-374
    • /
    • 2022
  • Intermediate filaments are the mechanical ropes for both cytoskeleton and nucleoskeleton of the cell which provide tensile force to these skeletons. In providing the mechanical support to the cell, they are likely to buckle. We used conventional Euler buckling model to find the critical buckling force under different boundary conditions which they assume during different functions. However, there are many experimental and theoretical studies about other cytoskeleton components which demonstrate that due to mechanical coupling with the surrounding surface, the critical buckling force increases considerably. Motivated with these results, we also investigated the influence of surface effects on the critical buckling force of intermediate filaments. The surface effects become profound because of increasing ratio of surface area of intermediate filaments to bulk at nano-scale. The model has been solved analytically to obtain relations for the critical forces for the buckling of intermediate filaments without and with surface effects. We found that critical buckling force with surface effects increases to a large extent due to mechanical coupling of intermediate filaments with the surrounding surface. Our study may be useful to develop a unified experimental protocol to characterize the physical properties of Intermediate filaments and may be helpful in understanding many biological phenomenon involving intermediate filaments.

Effects of Surface Charges on Hydrophobicity and Surface Potential Decay with Various Surface States of Silicone Rubber for Outdoor Insulator (옥외용 실리콘 절연재료의 발수성에 미치는 표면전하의 영향과 표면 상태에 따른 표면전위 감쇠)

  • 연복희;박충렬;허창수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.8
    • /
    • pp.678-686
    • /
    • 2002
  • This paper presents the effects of accumulation of surface charges on hydrophobic level and the changes of surface potential decay with various artificial environment treatments on high temperature vulcanized (HTV) silicone rubber used for outdoor insulating material. For this study, the charging apparatus by corona discharge, in which grid electrode was installed between the main corona and ground electrode, was used. From this study, it was found that the accumulation of surface charges above a critical surface potential on silicone insulating materials could lead to the temporary loss of surface hydrophobicity. In addition, corona stress and water absorption stress increase the decay rate of surface charges of HTV silicone rubber, while ultraviolet (UV) stress causes longer decay time. We could conclude that the effects of surface charges on hydrophobicity level and the changes of surface state by various artificial treatments were found through a trend of surface potential decay.

An investigation into the influence of thermal loading and surface effects on mechanical characteristics of nanotubes

  • Ebrahimi, Farzad;Shaghaghi, Gholam Reza;Boreiry, Mahya
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.179-200
    • /
    • 2016
  • In this paper the differential transformation method (DTM) is utilized for vibration and buckling analysis of nanotubes in thermal environment while considering the coupled surface and nonlocal effects. The Eringen's nonlocal elasticity theory takes into account the effect of small size while the Gurtin-Murdoch model is used to incorporate the surface effects (SE). The derived governing differential equations are solved by DTM which demonstrated to have high precision and computational efficiency in the vibration analysis of nanobeams. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of thermal loading, small scale and surface effects, mode number, thickness ratio and boundary conditions on the normalized natural frequencies and critical buckling loads of the nanobeams in detail. The results show that the surface effects lead to an increase in natural frequency and critical buckling load of nanotubes. It is explicitly shown that the vibration and buckling of a nanotube is significantly influenced by these effects and the influence of thermal loadings and nonlocal effects are minimal.

A Study on the Spindle Run-out Effects on Cutter Mark and Surface Roughness (주축 런아웃이 절삭흔과 표면거칠기에 미치는 영향에 관한 연구)

  • Hwang, Young-Kug;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.84-91
    • /
    • 2007
  • The radial error motion of a machine tool cutter/spindle system is critical to the dimensional accuracy of the parts to be machined. This paper presents an investigation into spindle run-out effects on cutting mark and surface roughness. We experimented the effects of spindle run-out on surface roughness in flat-end milling by cutting AL 7075 workpiece in various cutting conditions. In order to analyze the effects of run-out on the surface roughness, the spindle's radial error motions was measured by mounting a sphere target onto the spindle as a reference. From the experimental results, it was found that spindle un-out makes a directive effects on surface roughness in flat-end milling.

pH Effects at Doped Si Semiconductor Interfaces (Doping된 Si 반도체 세계에서 pH 효과)

  • 천장호;라극환
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.12
    • /
    • pp.1859-1864
    • /
    • 1990
  • The effect of H+ and OH- ion concentrations at doped Si semiconductor/pH buffer solution interfaces were investigated in terms of cyclic current-voltage characteristics. The effects of space charge on oppositely doped Si semiconductors, i.e., p-and n-Si semiconductors, can be effectively applied to study the pH effects and the slow surface states at the interfaces. The adsorptions of H+ and OH- inons on the doped Si semiconductor surfaces are physical adsorption rather than chemical adsorption. Adsorptive processes and charging effects of the slow surface states can be explained as the potential barrier variations and the related current-voltage characteristics at the interfaces. Under forward bias, the charged slow surface states on the p-and n-si semiconductor surface are donor and acceptor slow surface states, respectively. The effects of minority carriers on the slow surface states can be neglected at the doped Si semiconductor interfaces.

  • PDF

Stability of perforated nanobeams incorporating surface energy effects

  • Almitani, Khalid H.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.555-566
    • /
    • 2020
  • This paper aims to present an analytical methodology to investigate influences of nanoscale and surface energy on buckling stability behavior of perforated nanobeam structural element, for the first time. The surface energy effect is exploited to consider the free energy on the surface of nanobeam by using Gurtin-Murdoch surface elasticity theory. Thin and thick beams are considered by using both classical beam of Euler and first order shear deformation of Timoshenko theories, respectively. Equivalent geometrical constant of regularly squared perforated beam are presented in simplified form. Problem formulation of nanostructure beam including surface energies is derived in detail. Explicit analytical solution for nanoscale beams are developed for both beam theories to evaluate the surface stress effects and size-dependent nanoscale on the critical buckling loads. The closed form solution is confirmed and proven by comparing the obtained results with previous works. Parametric studies are achieved to demonstrate impacts of beam filling ratio, the number of hole rows, surface material characteristics, beam slenderness ratio, boundary conditions as well as loading conditions on the non-classical buckling of perforated nanobeams in incidence of surface effects. It is found that, the surface residual stress has more significant effect on the critical buckling loads with the corresponding effect of the surface elasticity. The proposed model can be used as benchmarks in designing, analysis and manufacturing of perforated nanobeams.

Bending behavior of squared cutout nanobeams incorporating surface stress effects

  • Eltaher, Mohamed A;Abdelrahman, Alaa A.
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.143-161
    • /
    • 2020
  • In nanosized structures as the surface area to the bulk volume ratio increases the classical continuum mechanics approaches fails to investigate the mechanical behavior of such structures. In perforated nanobeam structures, more decrease in the bulk volume is obtained due to perforation process thus nonclassical continuum approaches should be employed for reliable investigation of the mechanical behavior these structures. This article introduces an analytical methodology to investigate the size dependent, surface energy, and perforation impacts on the nonclassical bending behavior of regularly squared cutout nanobeam structures for the first time. To do this, geometrical model for both bulk and surface characteristics is developed for regularly squared perforated nanobeams. Based on the proposed geometrical model, the nonclassical Gurtin-Murdoch surface elasticity model is adopted and modified to incorporate the surface energy effects in perforated nanobeams. To investigate the effect of shear deformation associated with cutout process, both Euler-Bernoulli and Timoshenko beams theories are developed. Mathematical model for perforated nanobeam structure including surface energy effects are derived in comprehensive procedure and nonclassical boundary conditions are presented. Closed forms for the nonclassical bending and rotational displacements are derived for both theories considering all classical and nonclassical kinematics and kinetics boundary conditions. Additionally, both uniformly distributed and concentrated loads are considered. The developed methodology is verified and compared with the available results and an excellent agreement is noticed. Both classical and nonclassical bending profiles for both thin and thick perforated nanobeams are investigated. Numerical results are obtained to illustrate effects of beam filling ratio, the number of hole rows through the cross section, surface material characteristics, beam slenderness ratio as well as the boundary and loading conditions on the non-classical bending behavior of perforated nanobeams in the presence of surface effects. It is found that, the surface residual stress has more significant effect on the bending deflection compared with the corresponding effect of the surface elasticity, Es. The obtained results are supportive for the design, analysis and manufacturing of perforated nanobeams.

Analytical investigation of the surface effects on nonlocal vibration behavior of nanosize curved beams

  • Ebrahimi, Farzad;Daman, Mohsen
    • Advances in nano research
    • /
    • v.5 no.1
    • /
    • pp.35-47
    • /
    • 2017
  • This paper deals with free vibration analysis of nanosize rings and arches with consideration of surface effects. The Gurtin-Murdach model is employed for incorporating the surface effect parameters including surface density, while the small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. An analytical Navier solution is presented to solve the governing equations of motions. Comparison between results of the present work and those available in the literature shows the accuracy of this method. It is explicitly shown that the vibration characteristics of the curved nanosize beams are significantly influenced by the surface density effects. Moreover, it is shown that by increasing the nonlocal parameter, the influence of surface density reduce to zero, and the natural frequency reaches its classical value. Numerical results are presented to serve as benchmarks for future analyses of nanosize rings and arches.