• Title/Summary/Keyword: surface deactivated

Search Result 27, Processing Time 0.019 seconds

A Study on the Possibility of Using of Spent RHDS Catalyst as a SCR Catalyst wash-coated on the metal corrugated substrate (폐 RHDS 촉매재생 후 메탈 코로게이트 지지체상에서 워시코팅에 의한 NOx 저감 SCR 촉매에 관한 연구)

  • Na, Woo-jin;Cha, Eunji;Kang, Dae-hwan;Go, Young-ju;Cho, Ye-ji;Choi, Eun-young;Park, Hea-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.723-732
    • /
    • 2020
  • The spent RHDS (Residue HydroDeSulfurization) catalyst is deactivated mainly by deposition of various contaminants such as coke, sulfur and vanadium on the surface of catalyst. To eliminate those contaminants, the following remanufacturing process was conducted. The first, heavy oil on the surface of the spent RHDS catalyst was removed by kerosene and dehydrated. The second, the high temperature incineration was carried out to eliminate coke and sulfur components deposited on the surface of spent RHDS catalyst. The third, the excessive quantity of Vanadium deposited on the surface of catalyst was removed by leaching process as follows: ultrasonic agitation was carried out at 50℃, for 10 seconds with 0.5% and 1% oxalic acid solution. The purpose of this process is to find out regenerated RHDS catalyst can be used as SCR catalyst for NOx reduction by controlling the vanadium residual content of the regenerated RHDS catalyst through leaching process. The composition of regenerated RHDS catalyst was analyzed by XRF and the NOx reduction efficiency was also measured by continuous catalytic fixed bed reactor. As the result, regenerated catalyst, with 0.5% oxalic acid, ultrasonic agitation in 10 seconds, showed the most stable NOx reduction efficiency. Also, in comparison with commercial SCR catalyst, the NOx reduction performance of regenerated catalyst was similar to that of commercial SCR catalyst at the temperature 375℃ and higher whereas was lower than commercial SCR catalyst at the temperature range between 200~250℃. Therefore, it was confirmed that the regenerated catalyst as powder form wash coated on the surface of metal corrugated substrate can be used for commercial SCR catalyst.

A Study on the NC Embedding of Vision System for Tool Breakage Detection (공구파손감지용 비젼시스템의 NC실장에 관한 연구)

  • 이돈진;김선호;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.369-372
    • /
    • 2002
  • In this research, a vision system for detecting tool breakage which is hardly detected by such indirect in-process measurement method as acoustic emission, cutting torque and motor current was developed and embedded into a PC-NC system. The vision system consists of CMOS image sensors, a slit beam laser generator and an image grabber board. Slit beam laser was emitted on the tool surface to separate the tool geometry well from the various obstacles surrounding the tool. An image of tool is captured through two steps of signal processing, that is, median filtering and thresholding and then the tool is estimated normal or broken by use of change of the centroid of the captured image. An air curtain made by the jetting high-pressure air in front of the lens was devised to prevent the vision system from being contaminated by scattered coolant, cutting chips in cutting process. To embed the vision system to a Siemens PC-NC controller 840D NC, an HMI(Human Machine Interface) program was developed under the Windows 95 operating system of MMC103. The developed HMI is placed in a sub window of the main window of 840D and this program can be activated or deactivated either by a soft key on the operating panel or M codes in the NC part program. As the tool breakage is detected, the HMI program emit a command for automatic tool change or send alarm to the NC kernel. Evaluation test in a high speed tapping center showed the developed system was successful in detection of the small-radius tool breakage.

  • PDF

NOx Removal of Mn Based Catalyst for the Pretreatment Condition and Sulfur Dioxide (전처리 조건 및 황산화물에 대한 Mn-Cu계 촉매의 탈질특성)

  • Park, Kwang-Hee;You, Seung-Han;Park, Young-Ok;Kim, Sang-Wung;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1923-1930
    • /
    • 2012
  • Mn-Cu catalysts were tested for selective catalytic reduction of NOx with NH3. Influence of initial reaction temperature was studied for NOx conversion in which reaction temperature was changed three patterns. NOx conversion of catalysts calcined at 200, 300 and $340^{\circ}C$ was measured during the changing temperature. Hydrogen conversion efficiency of calcined catalysts was also measured in the $H_2$-TPR system. The deactivation effect of $SO_2$ on catalyst was investigated with the on-off control of $SO_2$ supply. The catalyst which calcined above $340^{\circ}C$ was somewhat deactivated with thermal shock. The reason of deactivation was draw from the results of surface area and hydrogen conversion.

Preparation of Fe/$Al_2O_3$ Granules for Conversion of Syngas to Light Olefins by Fischer-Tropsch Reaction (합성가스에서 경질올레핀 제조를 위한 피셔-트롭시 반응용 구형 철-알루미나 촉매 합성)

  • Lee, Dong-Joon;Jung, Kwang-Deog;Yoo, Kye-Sang
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.333-336
    • /
    • 2010
  • Fe/$Al_2O_3$ granules with various compositions were prepared by combining sol-gel with oil drop method for Fishcer-Tropsh reaction to produce light olefin from synthesis gas. The granules was characterized and employed as a catalyst in the reaction. The surface area of granules was decreased with increasing Fe concentration. Especially, granule with 1.5 of Al/Fe ratios showed the highest CO conversion. However, the olefin selectivity was hardly affected by Al/Fe ratio. K concentration of granule gave a significant effect on catalytic performance. Initial CO conversion and olefin selectivity were increased with K concentration. However, the catalyst with higher K concentration was deactivated rapidly.

Effect of Al Content on the Gas-Phase Dehydration of Glycerol over Silica-Alumina-Supported Silicotungstic Acid Catalysts

  • Kim, Yong-Tae;You, Su-Jin;Jung, Kwang-Deog;Park, Eun-Duck
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2369-2377
    • /
    • 2012
  • The gas-phase dehydration of glycerol to acrolein was carried out over silicotungstic acid ($H_4SiW_{12}O_{40}{\cdot}xH_2O$, HSiW) catalysts supported on $SiO_2$, ${\eta}-Al_2O_3$, and silica-aluminas with different Al contents. The HSiW catalysts supported on silica-aluminas showed higher glycerol conversions and acrolein yields during the initial 2 h at $315^{\circ}C$ than did $SiO_2$- and ${\eta}-Al_2O_3$-supported HSiW catalysts. Among the tested catalysts, HSiW/$Si_{0.9}Al_{0.1}O_x$ exhibited the highest space-time yield during the initial 2 h. The loaded HSiW species can change the acid types and suppress the formation of carbonaceous species on Al-rich silica-aluminas. The deactivated HSiW supported on silica-aluminas can be fully regenerated after calcination in air at $500^{\circ}C$. As long as the molar ratio between water and glycerol was in the range of 2-11, the acrolein selectivity increased significantly with increasing water content in the feed, while the surface carbon content decreased owing to the suppression of heavy compounds.

Development of the Highly Dispersed Palladium-Nickel Catalysts for Catalytic Partial Oxidation of Methane (메탄 부분산화 반응을 위한 고분산된 팔라듐-니켈 촉매 합성 및 반응)

  • Lee, Seunghyun;Jeon, Jonghyun;Kim, Juchan;Ha, Kyoung-Su
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.269-275
    • /
    • 2021
  • In this study, ordered mesoporous silica-supported Ni catalysts were prepared for catalytic partial oxidation of methane (CPOM) by using electroless nickel plating method. Unlike conventionally impregnated catalysts, the electrolessly-plated nickel catalyst showed that nickel was highly dispersed and formed stably on silica-supported surface. It was verified by TEM-EDS analysis. During the activity tests, the electrolessly-plated nickel was barely sintered and the amount of carbon deposition was very small. Consequently, the catalyst was far less deactivated, while the sintering was significantly observed in the cases of the catalysts prepared by the conventional impregnation method. Regarding the palladium-promoted catalysts, the reducibility of nickel was increased, and the reaction performances were enhanced in terms of CH4 conversion and H2/CO ratio of produced syngas.

Evaluation of Catalyst Deactivation and Regeneration Associated with Photocatalysis of Malodorous Sulfurized-Organic Compounds (악취유발 황화유기화합물질의 광촉매분해에 따른 촉매 비활성화와 재생 평가)

  • Jo, Wan-Kuen;Shin, Myeong-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.965-974
    • /
    • 2009
  • This study evaluated the degradation efficiency of malodorous sulfurized-organic compounds by utilizing N- and Sdoped titanium dioxide under visible-light irradiation, and examined the catalyst deactivation and regeneration. Catalyst surface was characterized by employing Fourier-Transform-Infrared-Red (FTIR) spectra. The visible-light-driven photocatalysis techniques were able to efficiently degrade low-level dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) with degradation efficiencies exceeding 97%, whereas they were not effective regarding the removal of high-level DMS and DMDS, with degradation efficiencies of 84 and 23% within 5 hrs of photocatalytic processes. As compared with DMS, DMDS which containes one more sulfur element revealed quick catalyst deactivation. Catalyst deactivation was confirmed by the equality between input and output concentrations of DMD or DMDS, the obsevation of no $CO_2$ generation during a photocatalytic process, and the FTIR spectrum peaks related with sulfur ion compounds, which are major byproducts formed on catalyst surfaces. The mineralization efficiency of DMS at 8 ppm, which was a peak value during a photocatalytic process, was calculated as 144%, exceeding 100%. The catalyst regenerated by high-temperature calcination exhibited higher catalyst recovery efficiency (53 and 58% for DMDS and DMS, respectively) as compared with dry-air and humid-air regeneration processes. However, even the calcined method was unable to totally regenerate deactivated catalysts.