Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.7.2369

Effect of Al Content on the Gas-Phase Dehydration of Glycerol over Silica-Alumina-Supported Silicotungstic Acid Catalysts  

Kim, Yong-Tae (Division of Energy Systems Research and Department of Chemical Engineering, Ajou University)
You, Su-Jin (Division of Energy Systems Research and Department of Chemical Engineering, Ajou University)
Jung, Kwang-Deog (Clean Energy Research Center, Korea Institute of Science and Technology)
Park, Eun-Duck (Division of Energy Systems Research and Department of Chemical Engineering, Ajou University)
Publication Information
Abstract
The gas-phase dehydration of glycerol to acrolein was carried out over silicotungstic acid ($H_4SiW_{12}O_{40}{\cdot}xH_2O$, HSiW) catalysts supported on $SiO_2$, ${\eta}-Al_2O_3$, and silica-aluminas with different Al contents. The HSiW catalysts supported on silica-aluminas showed higher glycerol conversions and acrolein yields during the initial 2 h at $315^{\circ}C$ than did $SiO_2$- and ${\eta}-Al_2O_3$-supported HSiW catalysts. Among the tested catalysts, HSiW/$Si_{0.9}Al_{0.1}O_x$ exhibited the highest space-time yield during the initial 2 h. The loaded HSiW species can change the acid types and suppress the formation of carbonaceous species on Al-rich silica-aluminas. The deactivated HSiW supported on silica-aluminas can be fully regenerated after calcination in air at $500^{\circ}C$. As long as the molar ratio between water and glycerol was in the range of 2-11, the acrolein selectivity increased significantly with increasing water content in the feed, while the surface carbon content decreased owing to the suppression of heavy compounds.
Keywords
Dehydration; Glycerol; Acrolein; Silica-alumina; Silicotungstic acid;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Bettahar, M. M.; Costentin, G.; Savary, L.; Lavalley, J. C. Appl. Catal. A: Gen. 1996, 145, 1.   DOI
2 Chai, S.-H.; Wang, H.-P.; Liang, Y.; Xu, B.-Q. Green Chem. 2007, 9, 1130.   DOI
3 Wang, F.; Dubois, J.-L.; Ueda, W. J. Catal. 2009, 268, 260.   DOI
4 Suprun, W.; Lutecki, M.; Haber, T.; Papp, H. J. Mol. Catal. A: Chem. 2009, 309, 71.   DOI
5 Suprun, W.; Lutecki, M.; Glaser, R.; Papp, H. J. Mol. Catal. A: Chem. 2011, 342-343, 91.   DOI
6 Cavani, F.; Guidetti, S.; Marinelli, L.; Piccinini, M.; Ghedini, E.; Signoretto, M. Appl. Catal. B: Environ. 2010, 100, 197.   DOI
7 Lauriol-Garbay, P.; Millet, J. M. M.; Loridant, S.; Bellière-Baca, V.; Rey, P. J. Catal. 2011, 280, 68.   DOI
8 Ulgen, A.; Hoelderich, W. F. Appl. Catal. A: Gen. 2011, 400, 34.   DOI
9 Kim, Y. T.; Jung, K.-D.; Park, E. D. Appl. Catal. B: Environ. 2011, 107, 177.   DOI
10 Tsukuda, E.; Sato, S.; Takahashi, R.; Sodesawa, T. Catal. Commun. 2007, 8, 1349.   DOI
11 Atia, H.; Armbruster, U.; Martin, A. J. Catal. 2008, 258, 71.   DOI
12 Chai, S.-H.; Wang, H.-P.; Liang, Y.; Xu, B.-Q. Green Chem. 2008, 10, 1087.   DOI
13 Zheng, Y.; Chen, X.; Shen, Y. Chem. Rev. 2008, 108, 5253.
14 Katryniok, B.; Paul, S.; Bellière-Baca, V.; Rey, P.; Dumeignil, F. Green Chem. 2010, 12, 2079.   DOI
15 Kim, Y. T.; Jung, K.-D.; Park, E. D. Micropor. Mesopor. Mat. 2010, 131, 28.   DOI
16 Atia, H.; Armbruster, U.; Martin, A. Appl. Catal. A: Gen. 2011, 393, 331.   DOI
17 Erfle, S.; Armbruster, U.; Bentrup, U.; Martin, A.; Brückner, A. Appl. Catal. A: Gen. 2011, 391, 102.   DOI
18 Corma, A.; Huber, G. W.; Sauvanaud, L.; O'Connor, P. J. Catal. 2008, 257, 163.   DOI
19 Kim, Y. T.; Jung, K.-D.; Park, E. D. Appl. Catal. A: Gen. 2011, 393, 275.   DOI
20 Kongpatpanich, K.; Nanok, T.; Boekfa, B.; Probst, M.; Limtrakul, J. Phys. Chem. Chem. Phys. 2011, 13, 6462.   DOI   ScienceOn
21 Kim, Y. T.; Park, E. D. Korean J. Chem. Eng. 2010, 27, 1123.   DOI
22 Mioe, U.B.; Dimitrijeviæ, R. Z.; Davidoviæ, M.; Nediae, Z. P.; Mitroviæ, M. M.; Colomban, P. H. J. Mater. Sci. 1994, 29, 3705.   DOI
23 Dias, J. A.; Caliman, E.; Dias, S. C. L.; Paulo, M.; de Souza, A. T. C. P. Catal. Today 2003, 85, 39.   DOI
24 Teague, C. M.; Li, X.; Biggin, M. E.; Lee, L.; Kim, J.; Gewirth, A. A. J. Phys. Chem. B 2004, 108, 1974.   DOI
25 Formo, E. V.; Wu, Z.; Mahurin, S. M.; Dai, S. J. Phys. Chem. C 2011, 115, 9068.   DOI
26 Scheithauer, M.; Grasselli, R. K.; Knozinger, H. Langmuir 1998, 14, 3019.   DOI   ScienceOn
27 Caliman, E.; Dias, J. A.; Dias, S. C. L.; Prado, A. G. S. Catal. Today 2005, 107-108, 816.   DOI
28 Kim, Y. T.; Jung, K.-D.; Park, E. D. Bull. Korean Chem. Soc. 2010, 31, 3283.   DOI
29 Alhanash, A.; Kozhevnikova, E. F.; Kozhevnikov, I. V. Appl. Catal. A: Gen. 2010, 378, 11.   DOI
30 Katryniok, B.; Paul, S.; Capron, M.; Lancelot, C.; Belliere-Baca, V.; Rey, P.; Dumeignil, F. Green Chem. 2010, 12, 1922.   DOI