• 제목/요약/키워드: surface damage

검색결과 2,318건 처리시간 0.03초

Important Parameters Related With Fault for Site Investigation of HLW Geological Disposal

  • Jin, Kwangmin;Kihm, You Hong;Seo, Dong-Ik;Kim, Young-Seog
    • 방사성폐기물학회지
    • /
    • 제19권4호
    • /
    • pp.533-546
    • /
    • 2021
  • Large earthquakes with (MW > ~ 6) result in ground shaking, surface ruptures, and permanent deformation with displacement. The earthquakes would damage important facilities and infrastructure such as large industrial establishments, nuclear power plants, and waste disposal sites. In particular, earthquake ruptures associated with large earthquakes can affect geological and engineered barriers such as deep geological repositories that are used for storing hazardous radioactive wastes. Earthquake-driven faults and surface ruptures exhibit various fault zone structural characteristics such as direction of earthquake propagation and rupture and asymmetric displacement patterns. Therefore, estimating the respect distances and hazardous areas has been challenging. We propose that considering multiple parameters, such as fault types, distribution, scale, activity, linkage patterns, damage zones, and respect distances, enable accurate identification of the sites for deep geological repositories and important facilities. This information would enable earthquake hazard assessment and lower earthquake-resulted hazards in potential earthquake-prone areas.

반복변형된 동 및 동알루미늄 단결정 표면형상의 나노-스케일 관찰 (Nano-Scale Surface Observation of Cyclically Deformed Copper and Cu-Al Single Crystals)

  • 최성종;이권용
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.67-72
    • /
    • 1999
  • Scanning probe Microscope(SPM) such as Scanning Tunneling Microscope(STM) and Atomic Force Microscope(AFM) was shown to be the powerful tool for nano-scale characterization of material surfaces Using this technique, surface morphology of the cyclically deformed Cu or Cu-Al single crystal was observed. The surface became proportionately rough as the number of cycles increased, but after some number of cycles no further change was observed. Slip steps with the heights of 100 to 200 nm and the widths of 1000 to 2000 nm were prevailing at the stage. The slipped distance of one slip system at the surface was not uniform. and formation of the extrusions or intrusions was assumed to occur such place. By comparing the morphological change caused by crystallographic orientation, strain amplitude, number of cycles or stacking fault energy, some interesting results which help to clarify the basic mechanism of fatigue damage were obtained. Furthermore, applicability of the scanning tunneling microscopy to fatigue damage is discussed.

  • PDF

SiC 웨이퍼의 이온 주입 손상 회복을 통한 Macrostep 형성 억제 (Suppression of Macrostep Formation Using Damage Relaxation Process in Implanted SiC Wafer)

  • 송근호;김남균;방욱;김상철;서길수;김은동
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.346-349
    • /
    • 2002
  • High Power and high dose ion implantation is essentially needed to make power MOSFET devices based on SiC wafers, because the diffusivities of the impurities such as Al, N, p, B in SiC crystal are very low. In addition, it is needed high temperature annealing for electrical activation of the implanted species. Due to the very high annealing temperature, the surface morphology after electrical activation annealing becomes very rough. We have found the different surface morphologies between implanted and unimplanted region. The unimplanted region showed smoother surface morphology It implies that the damage induced by high energy ion implantation affects the roughening mechanism. Some parts of Si-C bonding are broken in the damaged layer, s\ulcorner the surface migration and sublimation become easy. Therefore the macrostep formation will be promoted. N-type 4H-SiC wafers, which were Al ion implanted at acceleration energy ranged from 30kev to 360kev, were activated at 1600$^{\circ}C$ for 30min. The pre-activation annealing for damage relaxation was performed at 1100-1500$^{\circ}C$ for 30min. The surface morphologies of pre-activation annealed and activation annealed were characterized by atomic force microscopy(AFM).

  • PDF

양극산화 처리된 5083 알루미늄 합금의 해수 내 유속변화에 따른 전기화학적 손상 특성 (Electrochemical Damage Characteristics of Anodized 5083 Aluminum Alloy with Flow Rate in Seawater)

  • 박일초;김성종
    • 한국표면공학회지
    • /
    • 제49권4호
    • /
    • pp.349-356
    • /
    • 2016
  • In this study, electrochemical damage behaviors with flow rate were investigated for anodized 5083 aluminum alloy in seawater. As the results of anodic polarization experiments and potentiostatic experiments at +1.0 V (vs. SSCE), the non-flow condition presented largely damaged surface resulting from a tendency of local pitting damage. Under various flow rate conditions, however, less surface damages under the application of anodic potential was obtained which is attributed to no accumulation of $H^+$ and $Cl^-$ ions on the surface. On the other hand, the results of the potentiostatic experiments at -1.0 V (vs. SSCE) with flow rate showed that anodized 5083 aluminum alloys could achieve the effective cathodic protection by low cathodic protection current density less than $2.61{\times}10^{-7}A/cm^2$ even under high flow rate of 1 m/s.

입자연마가공에서의 입자 형상의 영향에 대한 고찰 (A Closer Look at the Effect of Particle Shape on Machined Surface at Abrasive Machining)

  • 김동균;성인하
    • Tribology and Lubricants
    • /
    • 제26권4호
    • /
    • pp.219-223
    • /
    • 2010
  • Despite the increasing need of nanometer-scale accuracy in abrasive machining using ultrasmall particles such as abrasive jet and chemical mechanical polishing(CMP), the process mechanism is still unknown. Based on the background, research on the effects of various process parameters on the machined surface at abrasive machining was motivated and performed by using finite element analysis where the effect of slurry fluid flow involved. The effect of particle shape on the machined surface during particle-surface collision was discussed in this paper. The results from FEA simulation revealed that any damage or defect generation on machined surface by the impact may occur only if the particle has enough impact energy. Therefore, it could be concluded that generation of the defects and damage on the wafer surface after CMP process was mainly due to direct contact of the 3 bodies, i.e., pad-particle-wafer.

래핑가공에 의한 와이어 방전가공면의 표면형상 (The surface profile of Wire-cut EDMed Surface by Lapping Process)

  • 이재명;김원일;왕덕현;이윤경
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.956-959
    • /
    • 2001
  • In die and mould industry, major material such as cemented carbide is broadly used for increasing the life time and decreasing the cost. It is also required the development for the skills of wire-cut electrical discharge machining(WEDM), but the WEDMed surface was found to be worst due to the attached components of wire. Precision machining method like lapping is necessary for obtaining high quality surface. The lapping compound such as Al2O3 and SiC and cast iron lap can be used for lapping process. The components of Cu and Zn were found WEDMed surface of the specimen. As the result, the low quality of precision was obtained and the heat damage layer of the specimen was occurred. The value of surface hardness was deteriorated, and therefore finish process was required.

  • PDF

스퍼터링 및 전기 도금으로 제조된 구리 박막에서의 표면 결함에 미치는 결정립계의 영향 (Grain Boundary Characteristics and Stress-induced Damage Morphologies in Sputtered and Electroplated Copper Films)

  • 박현;황수정;주영창
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2003년도 춘계학술발표회 초록집
    • /
    • pp.4-4
    • /
    • 2003
  • Various Cu films were fabricated using sputtering and electroplating with and without additive, and their surface damages after annealing were investigated. After annealing at 43SoC, the difference between damage morphologies of the films was observed. In some films stress-induced grooves along the grain boundaries were observed, while in the others voids at the grain boundary triple junctions were observed. It was also observed that the stress-induced groove was formed along the high energy grain boundaries. It was found out that the difference of the morphologies of surface damages in Cu films depends on not process type but grain boundary characteristics. To explain the morphological difference of surface damages, a simple parameter considering the contributions of grain structures and grain boundary characteristics to surface and grain boundary diffusions is suggested. The effective grain boundary area, which is a function of grain size, film thickness and the fraction of high energy grain boundaries, played a key role in the morphological difference.

  • PDF

폐(肺)와 피부(皮膚)의 관계(關係)에 대(對)한 문헌적(文獻的) 고찰(考察) (The investigation of literature about relation of lung and skin)

  • 이한구;정승기;이형구
    • 대한한방내과학회지
    • /
    • 제11권1호
    • /
    • pp.141-146
    • /
    • 1990
  • The skin is related the lung as follows ; 1. The lung control skin and give a nutrition to skin. The skin and hair 'hab' (合) the lung. 2. As a damage of lung is a damage of skin, skin and hair 'chi-lag' (聚落) 3. A defensive energy of lung give a nutrition to skin, and strengthen the body surface. 4. Dryness damage the lung, and so damage the skin. According to the above findings, we know the body surface are closely related to the lung functionally.

  • PDF

소재에 damage가 없는 pH 7의 중성 주석 도금액 개발 (Neutral tin plating solution without damage to material)

  • 노기홍;김건호;이성준;김동현
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.98.2-98.2
    • /
    • 2018
  • 현재 시중에 판매되는 대부분의 중성 주석 도금액의 경우 pH 사용 구간이 3~5 정도를 형성하고 있으며, 이보다 높을 경우 도금간 칩붙음 및 주석의 4가로의 산화가 빠르게 일어나는 문제점을 가지고 있다. 또한 낮은 pH로 인해 내산성이 취약한 소재의 경우 도금이 불가능할 정도의 소재상 damage를 확인할 수 있으며, 이는 제품 소재 선택에 제약이 따름으로 인해 산업의 발전을 저해하는 요소임이 분명하다. 이를 극복하기 위해 종래의 도금액에 1종 이상의 첨가제를 첨가하여 소재의 damage를 최소화하는 방안을 사용 중이지만 이러한 방법으로는 궁극적으로 문제를 해결하는 데에는 한계가 있다. 따라서 본 연구에서는 완전한 중성(pH6~7)을 가지는 도금액을 개발함으로써 도금제품의 소재 선택에 자유를 부여함과 동시에 친환경 원료를 사용함으로써 폐수처리의 용이함과 생산 현장의 환경 개선에 그 목적이 있다.

  • PDF

소성온도가 도자기의 기계적 특성 및 접촉손상에 미치는 영향 (Effect of Firing Temperature on Mechanical Property and Contact Damage in Pottery)

  • 정연길
    • 한국세라믹학회지
    • /
    • 제35권12호
    • /
    • pp.1343-1350
    • /
    • 1998
  • A study is made of mechanical properties of unglazed matrix as a funtion of sintering temperature and crack patterns in layer structur pottery consisting of glaze and substrate and in matrix which is sintered at 120$0^{\circ}C$ and 130$0^{\circ}C$ respectively. The mechanical properties of matrix are increased due to density and vitrification to 130$0^{\circ}C$ The interface of glazed bilayer reveals the reactive intermediate layer. Herzian indentation testing is used to investigate the evolution of damage modes as a function of load. In the materials sintered at 120$0^{\circ}C$ quasi-plastic deformation is developed at the matrix and the cone-like cracks initiate at the glazing top surface and additionally upward-extending transverse cracks initiate at the internal in-just initiate at the glazing top surface which pass through the interface with increasing of indentation load. Finally the dominant damage mode shifts from substrate quasi-plasticity to coating fracture with increasing sintering temperature.

  • PDF