• Title/Summary/Keyword: surface contamination

Search Result 930, Processing Time 0.027 seconds

The Roles of Lactic Acid Bacteria for Control of Fungal Growth and Mycotoxins (곰팡이 생육 및 곰팡이 독소 생산의 억제에 있어서의 유산균의 역할)

  • Kim, Jihoo;Lee, Heeseob
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1128-1139
    • /
    • 2020
  • Over recent years, it has become evident that food and agricultural products are easily contaminated by fungi of Aspergillus, Fusarium, and Penicillium due to rapid climate change, which is not only a global food quality concern but also a serious health concern. Owing to consumers' interest in health, resistance to preservatives such as propionic acid and sorbic acid (which have been used in the past) is increasing, so it is necessary to develop a substitute from natural materials. In this review, the role of lactic acid bacteria as a biological method for controlling the growth and toxin production of fungi was examined. According to recent studies, lactic acid bacteria effectively inhibit the growth of fungi through various metabolites such as organic acids with low molecular weight, reuterin, proteinaceous compounds, hydroxy fatty acids, and phenol compounds. Lactic acid bacteria effectively reduced mycotoxin production by fungi via adsorption of mycotoxin with lactic acid bacteria cell surface components, degradation of fungal mycotoxin, and inhibition of mycotoxin production. Lactic acid bacteria could be regarded as a potential anti-fungal and anti-mycotoxigenic material in the prevention of fungal contamination of food and agricultural products because lactic acid bacteria produce various kinds of potent metabolic compounds with anti-fungal activities.

The Effects of Fertilization on Growth Performances and Physiological Characteristics of Liriodendron tulipifera in a Container Nursery System (시비 처리가 백합나무 용기묘의 생장 및 생리적 특성에 미치는 영향)

  • Cho, Min Seok;Lee, Soo Won;Park, Byung Bae;Park, Gwan Su
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.305-313
    • /
    • 2011
  • Fertilization is essential to seedling production in nursery culture, but excessive fertilization can contaminate surface and ground water around the nursery. The objective of this study was to find optimal fertilization practice of container seedling production for reducing soil and water contamination around the nursery without compromising seedling quality. This study was conducted to investigate growth performance, photosynthesis, chlorophyll fluorescence, and chlorophyll contents of Liriodendron tulipifera growing under three different fertilization treatments (Constant rate, Three-stage rate, and Exponential rate fertilization). Root collar diameter, height, and biomass of L. tulipifera were the highest at Constant treatment. Like growth performance, seedling quality index (SQI) were higher at Constant than at other treatments, but not significantly different among treatments. L. tulipifera showed good photosynthetic capacity at all treatments. Photochemical efficiency and chlorophyll contents were significantly lower at Exponential than at other treatments. Therefore, Exponential fertilization which is 50% fertilizer of other treatments would maximize seedling growth and minimize nutrient loss.

Adhesion control of Campylobacter jejuni in chicken skin using emulsifiers (유화제를 이용한 계육 표면에서 Campylobacter jejuni의 부착 제어)

  • Oh, Do Geon;Kim, Kwang Yup
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.6
    • /
    • pp.670-677
    • /
    • 2020
  • To prevent contamination by Campylobacter jejuni during chicken carcass processing, the effect of emulsifiers on C. jejuni inoculated on chicken skin was investigated using confocal laser scanning microscopy. Among the 8 emulsifiers (SWA-10D, L-7D, M-7D, S-1670, L-1695, P-1670, polysorbate 20, polysorbate 80) tested for antimicrobial activity by the paper disk method, 4 emulsifiers (L-7D, L-1695, polysorbate 20, polysorbate 80) were screened further. Emulsifier L-1695 showed the largest clear zone at a concentration of 200 mg/mL. The 4 emulsifiers subjected to primary screening were screened for heat and pH stability. In the contact surface test, emulsifier L-1695 showed the lowest log CFU/㎠ value on both stainless steel and ceramic surfaces. When emulsifier L-1695 was applied via general and electrostatic spray methods, the number of C. jejuni entrapped inside chicken skin follicles was significantly reduced in both methods. In conclusion, the emulsifier L-1695 could be employed as a microbial detachment agent in the chicken carcass processing industry.

A Fundamental Study on Shearing/Bonding Characteristics of Interface Between Rock Mass and Backfills in Mine Openings (폐광산 채움재와 암반 경계부의 전단 및 접합특성에 관한 기초 연구)

  • Kim, Byung-Ryeol;Lee, Hyeon-woo;Kim, Young-Jin;Cho, Kye-Hong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.623-646
    • /
    • 2021
  • As the demand for electric power increases with acceleration of electrification at home and abroad, the needs for coal-fired electrical power plant are accordingly increased. However, these coal-fired electrical power plants induce also many environmental problems such as increase of air pollutants, increase of possibility of land contamination by reclamation of coal ash, even though these power plants have a good economical efficiency. In case of a by-product of coal-fired electrical power plants, only 70% of them are recycled and the remaining 30% of by-product are fully buried in surrounding ground. Consequently, this study deals with coal ash backfilling mechanism in abandoned mine openings for the purposes of increasing the coal ash recycling rate as well as securing the mine area stability. In order to analyze the backfill and ground reinforcement by interaction between rock mass and backfills, the copying samples of discontinuous surface with different roughnesses were produced for bond strength tests and direct shear tests. And statistical analysis was also conducted to decide the characteristics of bond and shear behavior with joint roughness and their curing day. Numerical simulations were also analyzed for examining the effect of interface behavior on ground stability.

Evaluation of Field Application of Soil Conditioner and Planting Chrysanthemum zawadskii on the Roadside Soils Damaged by Deicing Agents

  • Yang, Ji;Lee, Jae-Man;Yoon, Yong-Han;Ju, Jin-Hee
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.6
    • /
    • pp.625-636
    • /
    • 2020
  • Background and objects: Soil contamination caused by CaCl2 that is used to deice slippery roads in winter is now recognized as one of the major causes of damage of roadside plants. The aim of this study is to identify the salt mitigation effects of planting Chrysanthemum zawadskii and using a soil conditioner. Methods: The study was conducted at the site where Pinus densiflora f. multicaulis was planted on the roadside between Konkuk University Sageori and Danwol Samgeori located in Chungju-si. We classified the soils collected from the field experimental site according to the degree of the damage caused by deicing agents and divided the site into six blocks of three 80 × 80 cm plots replicated by treatment type. Three selected plots were treated with loess-balls on the soil surface (high salinity with loess-balls, medium salinity with loess-balls, low salinity with loess-balls) and three were left as an untreated control (H = high salinity, M = medium salinity, L = low salinity). The soil properties were measured including pH, EC and exchangeable cations as well as the growth of Chrysanthemum zawadskiia. Results: In the results of soil analysis, pH before planting Chrysanthemum zawadskiia was 6.39-6.74 and in September, five months after planting, the acidity was reduced to 5.43-5.89. Electrical conductivity (EC) was measured to be H > M > L with the higher degree of damage by deicing agents. The analysis of deicing exchangeable cations showed that the content of Ca2+ of soils were significantly correlated to deicing exchangeable cations (Ca2+, Na+, Mg2+) in the shoot part of Chrysanthemum zawadskii. The loess-ball treatment showed a lower content of deicing exchangeable cations than the treatment where Chrysanthemum zawadskiia was planted. Conclusion: In this study, the use of a new system made of loess-balls is proposed as a soil conditioner to protect soils from the adverse effects of road deicing salts. These data suggest that treatment of soil conditioners and planting Chrysanthemum zawadskiia are effective in mitigation of salt stress on the soils damaged by deicing agents.

Literature review on fractography of dental ceramics (치과용 세라믹의 파단면분석(fractography)에 대한 문헌고찰)

  • Song, Min-Gyu;Cha, Min-Sang;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.3
    • /
    • pp.138-149
    • /
    • 2022
  • The clinical applicability of ceramics can be increased by analyzing the causes of fractures after fracture testing of dental ceramics. Fractography to analyze the cause of fracture of dental ceramics is being widely applied with the development of imaging technologies such as scanning electron microscopy. Setting the experimental conditions is important for accurate interpretation. The fractured specimens should be stored and cleaned to avoid contamination, and metal pretreatment is required for better observation. Depending on the type of fracture, there are dimple rupture, cleavage, and decohesive rupture mainly observed in metals, and fatigue fractures and conchoidal fractures observed in ceramics. In order to reproduce fatigue fracture in the laboratory, which is the main cause of fracture of ceramics, a dynamic loading for observing slow crack growth is essential, and the load conditions and number of loads must be appropriately set. A typical characteristic of a fracture surface of ceramic is a hackle, and the causes of fracture vary depending on the shape of hackle. Fractography is a useful method for in-depth understanding of fractures of dental ceramics, so it is necessary to follow the exact experimental procedure and interpret the results with caution.

Non-Destructive Scientific Analysis of the Gold Fabric Excavated of Cheongsong Shim's Grave (청송심씨 묘에서 출토된 금직물의 비파괴 과학적 분석)

  • Lee, Hwang-Jo;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.38 no.3
    • /
    • pp.243-253
    • /
    • 2022
  • Using non-destructive analytical methods, we identified the material characteristics of two gold fabric artifacts excavated from the Cheongsong Sim clan (Bugeum Wonsam, Jikgeum Chima), including the artifact condition, fiber type, surface contamination, and metallic threads. We found that the artifacts were buried and had turned brown; thus, we were unable to determine their original color. The fiber type was determined to be silk from cocoons, based on scanning electron microscopy, Fourier transform infrared (FT-IR) analyses of Amide I, II, III, and IV peaks, and color reactions Further, the FT-IR and X-ray fluorescence (XRF) analyses identified the white and black stains as natural resin hydrolyzed substances, such as lipids and proteins, that occurred as microbial decomposition due to body decay. Finally, the XRF analyses identified the thin gold layer of the metallic yarn as gold (Au). According to the FT-IR data and the color reaction to the metallic yarn medium, the adhesive component of the medium was a product of-Amides I, II, III, and 3000 cm-1 within Amides A and B (an animal type), respectively. Thus, the medium was identified as Hanji (Korean paper), which is made from domestically produced Broussonetia kazinoki fibers.

Erosion Characteristics of TGase-added Biopolymers (TGase 첨가 바이오폴리머의 침식특성 연구)

  • Kanghyun Kim;Seunghyun Kim;Dohee Kim;Jongho Shin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.9
    • /
    • pp.5-13
    • /
    • 2023
  • Cement-based reinforcement materials, which are representative slope reinforcement materials, can cause contamination of ground and groundwater when ground injection or surface application is applied. Accordingly, slope reinforcement materials using eco-friendly biopolymers are attracting attention as a means of replacing existing materials, but the biopolymers currently used are easily dissolved when exposed to groundwater or rainfall environments, reducing strength. In order to solve this problem, the cross-linking of protein between sodium casein and Transglutaminase (TGase, C20H16N4O2S2) was used to increase the water resistance of biopolymers, and a rainfall slope test was conducted to evaluate their usability and applicability as a slope reinforcing material. In the case of reinforcement with only sodium casein, the precipitation dissolved sodium casein, and the slope was completely destroyed in 1 hour. On the other hand, it was observed that the slope reinforced by adding a small amount of TGase (0.5%) do not collapse even after 80 hours of rainfall duration due to increased water resistance. Strength and water resistance increases due to the addition of a small amount of TGase, and its applicability as an eco-friendly reinforcement is confirmed.

Study on the feasibility of metallic saggar for synthesizing NCM cathode active materials-I (NCM 계 양극활물질 합성용 금속질 내화갑 가능성 연구-I)

  • Yong Il Park;Ji Hun Jung;Sung Hyun Woo;Jung Heon Lee;Hyeong-Jun Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.103-107
    • /
    • 2024
  • In this study, nickel, a pure metal material, was proposed as a saggar for synthesizing NCM [Li(NixCoyMnz)O2] cathode active material. Nickel is known as a metal that is resistant to oxidation and has a high melting point. Nickel is one of the main components of NCM cathode material and was expected to be free from problems with contamination from saggar during cathode material synthesis. We sought to confirm the possibility of nickel as a saggar for synthesizing NCM cathode active materials. When a Ni metal crucible and Ni0.8Co0.1Mn0.1(OH)2 (NCM 811) precursor material were reacted at 900℃ for a long time, the change in the reaction layer on the surface of the crucible over time was analyzed. The nickel crucible reaction layer formed during heat treatment at 900℃ was nickel oxide, and is thought to have been created by simultaneous oxygen diffusion from the cathode precursor oxide and reaction with oxygen in the atmosphere. The change in thickness of the oxide layer appears to slow down after 480 hours, which suggests that the rate of oxygen diffusion from the precursor is reduced. It remained combined without falling out of the crucible until 480 hours. However, it was confirmed that the oxide layer falls off after 720 hours, so it is thought that it can be used as saggar for NCM synthesis only for a certain period of time.

Analysis of Empirical Multiple Linear Regression Models for the Production of PM2.5 Concentrations (PM2.5농도 산출을 위한 경험적 다중선형 모델 분석)

  • Choo, Gyo-Hwang;Lee, Kyu-Tae;Jeong, Myeong-Jae
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.283-292
    • /
    • 2017
  • In this study, the empirical models were established to estimate the concentrations of surface-level $PM_{2.5}$ over Seoul, Korea from 1 January 2012 to 31 December 2013. We used six different multiple linear regression models with aerosol optical thickness (AOT), ${\AA}ngstr{\ddot{o}}m$ exponents (AE) data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua satellites, meteorological data, and planetary boundary layer depth (PBLD) data. The results showed that $M_6$ was the best empirical model and AOT, AE, relative humidity (RH), wind speed, wind direction, PBLD, and air temperature data were used as input data. Statistical analysis showed that the result between the observed $PM_{2.5}$ and the estimated $PM_{2.5}$ concentrations using $M_6$ model were correlations (R=0.62) and root square mean error ($RMSE=10.70{\mu}gm^{-3}$). In addition, our study show that the relation strongly depends on the seasons due to seasonal observation characteristics of AOT, with a relatively better correlation in spring (R=0.66) and autumntime (R=0.75) than summer and wintertime (R was about 0.38 and 0.56). These results were due to cloud contamination of summertime and the influence of snow/ice surface of wintertime, compared with those of other seasons. Therefore, the empirical multiple linear regression model used in this study showed that the AOT data retrieved from the satellite was important a dominant variable and we will need to use additional weather variables to improve the results of $PM_{2.5}$. Also, the result calculated for $PM_{2.5}$ using empirical multi linear regression model will be useful as a method to enable monitoring of atmospheric environment from satellite and ground meteorological data.