• Title/Summary/Keyword: surface contamination

Search Result 926, Processing Time 0.04 seconds

The Effect on the Microroughness of Si Substrate by Metallic Impurity Ca (금속 불순물 Ca이 Si 기판의 표면 미세 거칠기에 미치는 영향)

  • Choe, Hyeong-Seok;Jeon, Hyeong-Tak
    • Korean Journal of Materials Research
    • /
    • v.9 no.5
    • /
    • pp.491-495
    • /
    • 1999
  • In this study, we focus on Ca contaminant which affects on the roughness Si substrate after thermal process. The initial Si substrates were contaminated intentionally by using a standard Ca solution. The contamination levels of Ca impurity were measured by TXRF and the chemical composition of that was analyzed by AES. Then we gre the thermal oxide to investigate the effect of Ca contaminants. The microroughness of the Si surface, the thermal oxide surface, and the surface after removing the thermal oxide were measured to examine the electrical characteristics. The initial substrates that were contaminated with the standard solution of Ca exhibited the contamination levels of 10\ulcorner~10\ulcorneratoms/$\textrm{cm}^2$ which was measured by TXRF. The Ca contaminants were detected by AES and exhibited the peaks of Ca, SI, C and O.After intentional contamination, the surface microroughness of this initial substrate was increased from $1.5\AA$ to 4$\AA$ as contamination levels became higher. The microroughness of the thermal oxide surfaces of both contaminated and bare Si substrates exhibits similar values. But the microroughness of the contaminated$ Si/SiO_2$ interface was increased as contamination increased. The thermal oxide of contaminated substrate exhibited the small minority carrier diffusion length, low breakdown voltage, and slightly high leakage current.

  • PDF

Study on the Reduction of Electron Contamination with A Cobalt-60 Gamma Ray (코발트-60 감마선의 전자 오염에 관한 연구)

  • Kim, Tae-Kyu;Chun, Ha-Chung;Lee, Myung-Za
    • Radiation Oncology Journal
    • /
    • v.7 no.2
    • /
    • pp.293-297
    • /
    • 1989
  • Electron contamination due to the interaction between radiation beam and material was analyzed for the factors such as source-skin distance (SSD), field size, tray characteristics and position of filter, which can affect the surface dose in Cobalt teletherapy. Surface dose in open beam was more influenced by SSD with increasing field size. Relative surface charge (RSC) increased with the use of tray (solid, circular hole, slotted), compared with open beam, which is thought to be due to increased electron contamination of the tray. To reduce the surface dose, 0.4mm thick Lipowitz metal filter was used. Compared with open beam, RSC decreased by 8.8%, 11.3%, 13.3%, 16.6%, 19.3% and 21.7% for the field size of $5{\times}5$, $10{\times}10$, $15{\times}15$, $20{\times}20$, $25{\times}25$ and $30{\times}30cm^2$, respectively. On the contrary, use of Lipowitz metal filter increased RSC at 60cm or less SSD. Surface dose was effectively reduced with Lpowitz metal filter placed right below solid tray in Cobalt teletherapy.

  • PDF

Contamination of an Alcyon Co-60 Gamma rays by Electrons (Alcyon Co-60 감마선의 전자오염)

  • Yoo Meong-Jin;Kim Dong-Won;Kim Chul-Soo;Chung Woon-Hyuk
    • Radiation Oncology Journal
    • /
    • v.6 no.1
    • /
    • pp.109-116
    • /
    • 1988
  • The Alcyon Co-60 gamma rays was studied for electron contamination. The surface dose, attributable almost entirely to contamination electrons, has a linear dependence on field width for square fields and an inverse square dependence on distance from the bottom of the fixed head assembly Build-up and surface dose measurements were taken with and without an acrylic blocking tray in place. Further measurements were made with a copper filter designed to reduce secondary electrons emitted by photon interactions with the acrylic tray. The results are discussed in relation to skin sparing effect for radiation therapy Patients. And to achieve the maximum skin sparing effect, the selection of the optimum SSD and TSD is needed.

  • PDF

The application of rapid SIMS analysis for the identification of surface contamination in TFT-LCD manufacturing

  • Liou, Been-Chih;Chou, Yi-Hung;Chen, Chien-Chih;Eccles, John A.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.665-668
    • /
    • 2006
  • Sodium is a serious contamination in LTPS TFT process. It causes the abnormal characteristics of TFT in operation. Contaminated areas can be seen in SEM images, but EDX measurements do not have adequate sensitivity to confirm the presence of superficial sodium residues. We employed SIMS as a fast analysis method to map the non-uniform distribution of sodium on the surface. SIMS can also indicate the thickness of the contamination.

  • PDF

The Development Plan of Salt Contamination Map Using GIS (지리정보 시스템을 이용한 전국 염해 오손도 구축 방안)

  • Kang, Yeon-Woog;Kwak, Joo-Sik;Shim, Eung-Bo;Yoo, Chol-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.377-379
    • /
    • 2001
  • Contamination flashover is responsible for insulator electrical failures. Particularly, in Korea, with its perennially dry spring, the first spring rain often cause serious line outages by forming a conductive liquid film on the insulator surface. Rainwater and fog are not normally conductive but unfortunately atmospheric dust deposited on the insulator surface contains soluble salts which may lead to bad condition of insulation by combining watery and salts. Transmission design engineers have used a contamination map drawn on the traditional paper map. But it is not convenient because it does not include the information of Geographic Information accurately. This paper explains the newly developed salt contamination map program using Geographic Information System, which provide accurate geographic information. The program is designed to use four parts of datum, salt contamination levels, 345kV & 154 kV transmission lines, power plants & substations and background map. The digital background map is composed of raster files, the others are done by vector map.

  • PDF

A Study on the Laser Aided Measurement of Salt Contamination of Porcelain Insulators (레이저를 이용한 활선 염해 측정)

  • Cho, C.H.;Lee, H.S.;Choi, Y.W.;Kweon, D.J.;Choi, I.H.;Kim, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1807-1809
    • /
    • 1997
  • The salt contamination on the surface of the porcelain insulators used electric power systems causes flash-over accidents. Therefore the quantity of salt contamination should be monitored not to exceed a limit. In this study, we tried laser aided measurement of salt contamination. The Nd:YAG laser beam was focused on the surface of the porcelain insulators which were artificially contaminated, and we detected the D-Line (${\cong}589nm$) of spontaneous emission from the excited sodium atoms with a PMT and an oscilloscope. And we deduced the relation between the detected signals and degree of salt contamination.

  • PDF

Monitoring Technique and Device of Surface Contamination for Line-Post Insulator (지지애자의 표면오염 모니터링 기술 및 장치)

  • Kil, Gyung-Suk;Park, Dae-Won;Jung, Kwang-Seok;Kim, Sun-Jae;Seo, Dong-Hoan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.413-417
    • /
    • 2010
  • Line to ground faults by deterioration of insulators has frequently occurred in power system, and the main cause is surface contamination of the insulators. The contamination of insulator is analyzed by monitoring the surface leakage current flowing them. The suspension insulator is monitored by installation of a zero-phase current sensor(ZCT), but the line-post insulator is impossible to apply the same method because of its large diameter structure. This paper proposed a detection method of surface leakage current for a line-post insulator, and it can easily be applied to new and/or built insulators. The leakage current is indirectly calculated from the potential difference between the metal electrode attached on the surface of insulator and the ground connector. To evaluate the performance of the proposed method, the leakage current is compared as a function of contamination condition controlled by the density of NaCl solution. The leakage current is proportioned to the density of NaCl solution, and the voltage detected by the electrode showed the same trend. From the experimental results, we designed and fabricated a monitoring device which is composed of a detection electrode, signal converter, microprocessor, and ZigBee, and its measurement range is $10{\mu}A{\sim}5mA$.

Method to Evaluate Fabric Contamination Due to Fine Dust (섬유소재의 미세먼지 오염도 평가 방법 개발에 관한 연구)

  • Hwang, So-Young;Kwon, Jin-Kyung;Kim, Young-Sil;Choi, Eun-Jin;Kim, Da-Jin;Kim, Min;Yook, Se-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.86-91
    • /
    • 2021
  • Recently, functional clothes that can reduce deposition and/or penetration of fine dust have been developed. However, there are no methods to quantitatively evaluate the performance of these clothes. In this study, we developed a method to contaminate a fabric using fine dust and established an approach to quantitatively assess the degree of particle contamination on the fabric surface. Silicate powder was chosen as the particle to simulate fine dust because silicate particles are fluorescent under UV light; therefore, they can be distinguished from any color of non-fluorescent fabric surface. A camera with a high-resolution lens system was used to scan the surface of the contaminated fabric surface, and the degree of particle contamination of the fabric surface was analyzed in terms of the pixels corresponding to the area of the fabric surface contaminated by silicate particles. Finished or unfinished nylon fabrics as well as cotton fabrics were contaminated with silicate particles, and their surfaces were scanned using the established camera. The proposed assessment method was found to be useful for quantitatively comparing the degree of particle contamination of the fabrics.

Preparation of Styrene-Ethyl acylate Core-shell Structured Detection Materials for aMeasurement of the Wall Contamination by Emulsion Polymerization

  • Hwang, Ho-Sang;Seo, Bum-Kyoung;Lee, Dong-Gyu;Lee, Kune-Woo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.84-85
    • /
    • 2009
  • New approaches for detecting, preventing and remedying environmental damage are important for protection of the environment. Procedures must be developed and implemented to reduce the amount of waste produced in chemical processes, to detect the presence and/or concentration of contaminants and decontaminate fouled environments. Contamination can be classified into three general types: airborne, surface and structural. The most dangerous type is airborne contamination, because of the opportunity for inhalation and ingestion. The second most dangerous type is surface contamination. Surface contamination can be transferred to workers by casual contact and if disturbed can easily be made airborne. The decontamination of the surface in the nuclear facilities has been widely studied with particular emphasis on small and large surfaces. The amount of wastes being produced during decommissioning of nuclear facilities is much higher than the total wastes cumulated during operation. And, the process of decommissioning has a strong possibility of personal's exposure and emission to environment of the radioactive contaminants, requiring through monitoring and estimation of radiation and radioactivity. So, it is important to monitor the radioactive contamination level of the nuclear facilities for the determination of the decontamination method, the establishment of the decommissioning planning, and the worker's safety. But it is very difficult to measure the surface contamination of the floor and wall in the highly contaminated facilities. In this study, the poly(styrene-ethyl acrylate) [poly(St-EA)] core-shell composite polymer for measurement of the radioactive contamination was synthesized by the method of emulsion polymerization. The morphology of the poly(St-EA) composite emulsion particle was core-shell structure, with polystyrene (PS)as the core and poly(ethyl acrylate) (PEA) as the shell. Core-shell polymers of styrene (St)/ethyl acrylate (EA) pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl sulfate (SOS) as an emulsifier using ammonium persulfate (APS) as an initiator. The polymer was made by impregnating organic scintillators, 2,5-diphenyloxazole (PPO) and 1,4-bis[5-phenyl-2-oxazol]benzene (POPOP). Related tests and analysis confirmed the success in synthesis of composite polymer. The products are characterized by IT-IR spectroscopy, TGA that were used, respectively, to show the structure, the thermal stability of the prepared polymer. Two-phase particles with a core-shell structure were obtained in experiments where the estimated glass transition temperature and the morphologies of emulsion particles. Radiation pollution level the detection about under using examined the beta rays. The morphology of the poly(St-EA) composite polymer synthesized by the method of emulsion polymerization was a core-shell structure, as shown in Fig. 1. Core-shell materials consist of a core structural domain covered by a shell domain. Clearly, the entire surface of PS core was covered by PEA. The inner region was a PS core and the outer region was a PEA shell. The particle size distribution showed similar in the range 350-360 nm.

  • PDF

Downward and Upward Air Flow Effects on Fume Particle Dispersion in Laser Line Cutting of Optical Plastic Films

  • Kim, Kyoungjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.37-44
    • /
    • 2020
  • In improving laser cutting of optical plastic films for mass production of optoelectronics display units, it is important to understand particle contamination over optical film surface due to fume particle generation and dispersion. This numerical study investigates the effects of downward and upward air flow motions on fume particle dispersion around laser cut line. The simulations employ random particle sampling of up to one million fume particles by probabilistic distributions of particle size, ejection velocity and angle, and fume particle dispersion and surface landing are predicted using Basset-Boussinesq-Oseen model of low Reynolds number flows. The numerical results show that downward air flow scatters fume particles of a certain size range farther away from laser cut line and aggravate surface contamination. However, upward air flow pushes fume particles of this size range back toward laser cut line or sucks them up with rising air motion, thus significantly alleviating surface contamination.