• Title/Summary/Keyword: surface configuration

Search Result 797, Processing Time 0.032 seconds

A Study on the Prediction of Bone Remodeling of Plated-Human Femur using 3-Dimensional Finite Element Method (3차원 유한요소법을 이용한 골절판에 대한 인체 대퇴골의 골재형성에 관한 연구)

  • 김현수
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.353-362
    • /
    • 1992
  • The stress distribution of bone is altered by the rigid bone plate, sometimes resulting in unfavorable osteoporosis. The rigidity and the biocompatibility are important factors for the design of prosthesis. However, it is also necessary to consider the effect on the bone remodeling. In this paper, it is attempted to establish an approximate and simple method to predict the trend of the configuration of surface bone remodeling for the case of a bone plate using stress analysis. Thus, three dimensional finite element model of plated-human femur is generated and simulated. In addition. the stress difference method (SDM) is introduced and attempted to demonstrate the configuration of surface bone remodeling of the plated-human femur. The results are compared with those of invivo tests and the feasibility of the stress difference method is discussed.

  • PDF

Study on Properties of Interior Ballistics According to Solid Propellant Grain Configuration (고체추진제 형상에 따른 강내탄도의 특성 연구)

  • Jang, Jin-Sung;Sung, Hyung-Gun;Kim, In-Joo;Roh, Tae-Seong;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.159-162
    • /
    • 2009
  • Using the numerical code for the interior ballistics, the performance of the interior ballistics with the characteristic of the configuration of the solid propellant has been investigated. In existing research, only ball type solid propellant is considered but at this research, cylinder and single slot type solid propellants are considered. Definite the change of performance of the interior ballistics according to specific surface area.

  • PDF

Static Wind Tunnel Test of Smart Un-manned Aerial Vehicle(SUAV) for TR-S2 Configuration (스마트 무인기 TR-S2 형상의 정적 풍동시험)

  • Choi Sungwook;Cho Taehwan;Chung Jindeog
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.755-762
    • /
    • 2005
  • To evaluate the aerodynamic efficiency of TR-S2 configuration designed by SUDC, wind tunnel tests of $40\%$ scaled model were done in KARI LSWT. The aerodynamic characteristics of plain and Semi-Slotted Flaperon were compared, and vortex generators were installed to improve flow pattern along the wing surface. Effects of the control surface such as elevator, rudder, aileron, and incidence angle of horizontal tail are measured for various testing conditions. Test results showed that Semi-Slotted Flaperon produced more favorable lift, lift/drag, and stall margins and application of vortex generator would be best choice to enhance wing performance. Longitudinal, lateral and directional characteristics of TR-S2 were found to be stable for the pitch and yaw motions.

Temperature variation in steel beams subjected to thermal loads

  • Abid, Sallal R.
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.819-835
    • /
    • 2020
  • The effects of atmospheric thermal loads on the response of structural elements that are exposed to open environments have been recognized by research works and design specifications. The main source of atmospheric heat is solar radiation, which dominates the variation of the temperature of air, earth surface and all exposed objects. The temperature distribution along the depth of steel members may differ with the geometry configuration, which means that the different-configuration steel members may suffer different thermally induced strains and stresses. In this research, an experimental steel beam was instrumented with many thermocouples in addition to other sensors. Surface temperatures, air temperature, solar radiation and wind speed measurements were recorded continuously for 21 summer days. Based on a finite element thermal analysis, which was verified using the experimental records, several parametric studies were directed to investigate the effect of the geometrical parameters of AISC standard steel sections on their thermal response. The results showed that the overall size of the beam, its depth and the thickness of its elements are of significant effect on vertical temperature distributions and temperature differences.

Grid Generation about Full Aircraft Configuration Using Interactive Grid Generator (상호 대화형 격자생성 환경을 이용한 항공기 전기체 격자계 생성)

  • Kim Y. S.;Kwon J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.145-151
    • /
    • 1999
  • An Interactive grid generation program(KGRID) with graphical user interface(GUI) has been improved. KGRID works on the UNLX environment and GUI has been implemented with OSF/Motif and X Toolkit and the graphics language is Open GL for visualization of the 3D objects. It supports more convenient user environment to generate 2D and 3D multi-block structured grid systems. It provides various useful field grid generation methods, which are the algebraic methods, the elliptic partial differential equations method and the predictor-corrector method. It also supports 3D surface grid generation with NURBS(Non-Uniform Rational B-Spline) and various stretching functions to control grid points distribution on curves and surfaces. And some menus are added to perform flexible management, for the objects. We generated surface and field grid system about full aircraft configuration using KGRID. The performance and stability of the KGRID is verified through the generation of the grid system about a complex shape.

  • PDF

Numerical Simulation: Effects of Gas Flow and Rf Current Direction on Plasma Uniformity in an ICP Dry Etcher

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.189-194
    • /
    • 2017
  • Effects of gas injection scheme and rf driving current configuration in a dual turn inductively coupled plasma (ICP) system were analyzed by 3D numerical simulation using CFD-ACE+. Injected gases from a tunable gas nozzle system (TGN) having 12 horizontal and 12 vertical nozzles showed different paths to the pumping surface. The maximum velocity from the nozzle reached Mach 2.2 with 2.2 Pa of Ar. More than half of the injected gases from the right side of the TGN were found to go to the pump without touching the wafer surface by massless particle tracing method. Gases from the vertical nozzle with 45 degree slanted angle soared up to the hottest region beneath the ceramic lid between the inner and the outer rf turn of the antenna. Under reversed driving current configuration, the highest rf power absorption region were separated into the two inner islands and the four peaked donut region.

Components Analysis of Surface Roughness in Turning Process by Frequency Analysis (주파수 분석에 의한 선삭면의 표면 거칠기 인자 해석)

  • Kim, Gyung-Nyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.3
    • /
    • pp.184-191
    • /
    • 1996
  • The purpose of this paper is to investigate components of surface roughness in turning with respect to the tool configuration and the changes of working conditions. Tool configurations of SNMG120404, SNMG120408 and DNMG150404, DNMG150408 are used, and working conditions such as cutting speed 3nd feed are varied. That is, the changes of cutting speed and feed were 150, 200, 250 m/min and 0.05, 0.1, 0.3 mm/rev, respectively. From the results obtained by the frequency analysis with spectrum, it is noted that the surface roughness was influenced most significantly by the feed. It is also observed that the vibration of bite had an effect on both the surface roughness and the surface waviness. Moreover, the influence of surface roughness increases as the feed decreases. Lastly, the vibration of the spindle was found to have little influence on the surface roughness in normal cases and the tool configuration was not the components of the surface roughness.

  • PDF

A Study on Aircraft Flight Stability of T-50 Control Surface Reconfiguration Mode in PA Configuration (T-50 착륙외장 형상에서 조종면 형상 재구성 모드의 항공기 비행)

  • Kim, Jong-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.93-100
    • /
    • 2006
  • Modern versions of supersonic jet fighter aircraft using a digital flight-by-wire flight control system design utilizes a control surface reconfiguration in order to guarantee the aircraft flight stability when a control surface is failed. The T-50 flight control laws are designed such that the surface reconfiguration mode controls the aircraft using non-failed control surfaces when one of the control surfaces is failed. In this paper, linear analysis and HQS(Handling Quality Simulator) pilot simulations are performed to analyze the flight stability and handling quality when the surface reconfiguration mode is engaged for aircraft landing configuration. It is found that the aircraft flight stability and handling quality is satisfied to level 1 requirements when the T-50 flight control law is changed to the surface reconfiguration mode.

Band Type Wearable Device's RF Configuration and Bent Microstrip Patch Antenna (밴드형 Wearable Device의 RF Configuration과 Bent 마이크로스트립 패치 안테나)

  • Lee, Dongho;Choi, Woo Cheol;Kim, Sung Hoe;Yoon, Young Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.16-23
    • /
    • 2015
  • In this paper, a bent microstrip patch antenna, which is suitable for band-type wearable devices and RF configuration, to be used in the WCDMA2100 mobile network is proposed. The proposed antenna using RF configuration which is consisted of separated Tx and Rx frequency band is designed to operate or function in WCDMA2100 Tx frequency band only and it is not strongly affected by the human body because of the conductor at the bottom side. At both flat case and bent case, the proposed antenna's maximum gain satisfies at least 5.3 dBi, and its -6 dB return loss bandwidth is wider than 20 MHz. The simulated surface absorption rate($SAR_{1g}$) result is under 0.7 [W/kg]. The proposed antenna suits in band-type wearable devices which is worn on wrists or arms.