• Title/Summary/Keyword: surface code

Search Result 995, Processing Time 0.027 seconds

CAPP for 3D Printer with Metallic Wire Supplied from the Front (금속선재 전방공급형 3D프린터를 위한 공정계획)

  • Kim, Ho-chan;Kim, Jae-gu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.155-160
    • /
    • 2018
  • The materials used for 3D printing are mainly plastic and metal. These materials are usually used in the powdered form. In order to improve the surface roughness of a manufactured product, these powders should consist of small uniform spherical particles. However, the powdered forms are sold at a considerably higher price than bulk or wired materials. When a wire-type material is used instead of a powder, we can supply a relatively large amount of the material at one time as well as reduce the cost. Moreover, the use of this form of the material will increase the process efficiency. This paper deals with the technology required to feed a wire material in front of the tool movement and discusses the examples used for the verification.

Influence of explosives distribution on coal fragmentation in top-coal caving mining

  • Liu, Fei;Silva, Jhon;Yang, Shengli;Lv, Huayong;Zhang, Jinwang
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.111-119
    • /
    • 2019
  • Due to certain geological characteristics (high thickness, rocky properties), some underground coal mines require the use of explosives. This paper explores the effects of fragmentation of different decks detonated simultaneously in a single borehole with the use of numerical analysis. ANSYS/LS-DYNA code was used for the implementation of the models. The models include an erosion criterion to simulate the cracks generated by the explosion. As expected, the near-borehole area was damaged by compression stresses, while far zones and the free surface of the boundary were subjected to tensile damage. With the increase of the number of decks in the borehole, different changes in the fracture pattern were observed, and the superposition effects of the stress wave became evident, affecting the fragmentation results. The superposition effect is more evident in close distances to the borehole, and its effect attenuates when the distance to the borehole increase.

Estimation of Effective Dose to Residents Due to Hypothetical Accidents During Dismantling of Steam Generator

  • Kyeong-Ju Lee;Chang-Lak Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.183-191
    • /
    • 2023
  • The potential impact of hypothetical accidents that occur during the immediate and deferred dismantling of the Kori Unit 1 steam generator has been comprehensively evaluated. The evaluation includes determining the inventory of radionuclides in the Steam Generator based on surface contamination measurements, assuming a rate of release for each accident scenario, and applying external and internal exposure dose coefficients to assess the effects of radionuclides on human health. The evaluation also includes calculating the atmospheric dispersion factor using the PAVAN code and analyzing three years of meteorological data from Kori NPP to determine the degree of diffusion of radionuclides in the atmosphere. Overall, the effective dose for residents living in the Exclusion Area Boundary (EAB) of Kori NPP is predicted, an it is found that the maximum level of the dose is 0.034% compared to the annual dose limit of 1 mSv for the general public. This implies that the potential impact of hypothetical accidents on human health discussed above is within acceptable limits.

QPlayer: Lightweight, scalable, and fast quantum simulator

  • Ki-Sung Jin;Gyu-Il Cha
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.304-317
    • /
    • 2023
  • With the rapid evolution of quantum computing, digital quantum simulations are essential for quantum algorithm verification, quantum error analysis, and new quantum applications. However, the exponential increase in memory overhead and operation time is challenging issues that have not been solved for years. We propose a novel approach that provides more qubits and faster quantum operations with smaller memory than before. Our method selectively tracks realized quantum states using a reduced quantum state representation scheme instead of loading the entire quantum states into memory. This method dramatically reduces memory space ensuring fast quantum computations without compromising the global quantum states. Furthermore, our empirical evaluation reveals that our proposed idea outperforms traditional methods for various algorithms. We verified that the Grover algorithm supports up to 55 qubits and the surface code algorithm supports up to 85 qubits in 512 GB memory on a single computational node, which is against the previous studies that support only between 35 qubits and 49 qubits.

SPH simulation of solitary wave interaction with coastal structures

  • Cai, Guozhen;Luo, Min;Wei, Zhaoheng;Khayyer, Abbas
    • Ocean Systems Engineering
    • /
    • v.12 no.3
    • /
    • pp.285-300
    • /
    • 2022
  • This paper adopts the Smoothed Particle Hydrodynamics (SPH) open-source code SPHinXsys to study the solitary wave interaction with coastal structures. The convergence properties of the model in terms of particle size and smoothing length are tested based on the example of solitary wave propagation in a flat-bottom wave flume. After that, the solitary wave interactions with a suspended submerged flat plate and deck with girders are studied. The wave profile and velocity field near the surface of the structures, as well as the wave forces exerted onto the structures are analyzed.

Computation of aerodynamic coefficients of a re-entry vehicle at Mach 6

  • R.C. Mehta;E. Rathakrishnan
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.457-471
    • /
    • 2023
  • The paper evaluates the aerodynamic coefficients on a blunt-nose re-entry capsule with a conical cross-section followed by a cone-flare body. A computer code is developed to solve three-dimensional compressible inviscid equationsfor flow over a Space Recovery Experiment (SRE) configuration at different flare-cone half-angle at Mach 6 and angle of attack up to 5°, at 1° interval. The surface pressure variation is numerically integrated to obtain the aerodynamic forces and pitching moment. The numerical analysis reveals the influence of flare-cone geometry on the flow characteristics and aerodynamic coefficients. The numerical results agree with wind tunnel results. Increase of cone-flare angle from 25° to 35° results in increase of normal force slope, axial forebody drag, base drag and location of centre of pressure by 62.5%, 56.2% and 33.13%, respectively, from the basic configuration ofthe SRE of 25°.

Thermomechanical Analysis of Composite Structures in Pyrolysis and Ablation Environments (열분해 및 삭마 환경의 복합재 구조물의 열기계적 연계 해석)

  • Choi, Youn Gyu;Kim, Sung Jun;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.597-604
    • /
    • 2013
  • A coupled thermomechanical analysis of composite structures in pyrolysis and ablation environments is performed. The pyrolysis and ablation models include the effects of mass loss, pore gas diffusion, endothermic reaction energy, surface recession, etc. The thermal and structural analysis interface is based upon a staggered coupling algorithm by using a commercial finite element code. The characteristics of the proposed method are investigated through numerical experiments with carbon/phenolic composites. The numerical studies are carried out to examine the surface recession rate by chemical and mechanical ablation. In addition, the effects of shrinkage or intumescence during the pyrolysis process are shown.

Effect of Heat/Mass Transfer in the turbine blade internal passage with various rib arrangement (회전하는 터빈 블레이드 이차유로내 요철 배열이 열/물질전달에 미치는 영향)

  • Lee, Sei-Young;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.22-29
    • /
    • 2001
  • The present study investigates the effects of various rib arrangements and rotating on heat/mass transfer in the cooling passage of gas turbine blades. The cooling passage has very complex flow structure, because of the rib turbulator and rotating effect. Experiments and numerical calculation are conducted to investigate the complex flow structures and heat transfer characteristics; the numerical computation is performed using a commercial code, FLUENT ver.5, to calculate the flow structures and the experiments are conducted to measure heat/mass transfer coefficients using a naphthalene sublimation technique. For the rotating duct tests, the test duct, which is the cross section of is $20mm\times40mm$ (the hydraulic diameter, $D_h$, of 26.7 mm, has two-pass with $180^{\circ}$ turning and the rectangular ribs on the wall. The rib angle of attack is $70^{\circ}$ and the maximum radius of rotation is $21.63D_h$. The partition wall has 10 mm thickness, which is 0.5 times to the channel width, and the distance between the tip of the partition wall and the outer wall of the turning region is 26.7 mm $(1D_h)$. The turning effect of duct flow makes the very complex flow structure including Dean type vortex and high turbulence, so that the heat/mass transfer increases in the turning region and at the entrance of the second pass. The Coriolis effect deflects the flow to the trailing surface, resulting in enhancement of the heat/mass transfer on the trailing surface and reduction on the leading surface in the first pass. However, the opposite phenomena are observed in the second pass. The each rib arrangement makes different secondary flow patterns. The complex heat/mass transfer characteristics are observed by the combined effects of the rib arrangements, duct rotation and flow turning.

  • PDF

Numerical simulation of the influence of interaction between Qanat and tunnel on the ground settlement

  • Sarfarazi, Vahab;Tabaroei, Abdollah
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.455-466
    • /
    • 2020
  • This paper presents analysis of the interaction between tunnel and Qanat with a particular interest for the optimization of Qanat shape using the discrete element code, PFC2D, and the results will be compared with the FEM results of PLAXIS2D. For these concerns, using software PFC2D based on Discrete Element Method (DEM), a model with dimension of 100m 100 m was prepared. A circular tunnel with dimension of 9 m was situated 20 m below the ground surface. Also one Qanat was situated perpendicularly above the tunnel roof. Distance between Qanat center and ground surface was 8 m. Five different shapes for Qanat were selected i.e., square, semi-circular, vertical ellipse, circular and horizontal ellipse. Confining pressure of 5 MPa was applied to the model. The vertical displacement of balls situated in ground surface was picked up to measure the ground subsidence. Also two measuring circles were situated at the tunnel roof and at the Qanat roof to check the vertical displacements. The properties of the alluvial soil of Tehran city are: γdry=19 (KN/㎥), E= 750 (kg/㎠), ν=0.35, c=0.3(kg/㎠), φ=34°. In order to validate the DEM results, a comparison between the numerical results (obtained in this study) and analytical and field monitoring have been done. The PFC2D results are compared with the FEM results. The results shows that when Qanat has rectangular shape, the tensile stress concentration at the Qanat corners has maximum value while it has minimum value for vertical ellipse shape. The ground subsidence for Qanat rectangular shape has maximum value while it has minimum value for ellipse shape of Qanat. The vertical displacements at the tunnel roof for Qanat rectangular shape has maximum value while it has minimum value for ellipse shape of Qanat. Historical shape of Qante approved the finding of this research.

A Conceptual Design on Performance Test Facility of Disposal Cover for the Near Surface Disposal of Low and Intermediate Level Radioactive Waste (중.저준위 방사성폐기물 천층처분을 위한 처분덮개의 성능실증 시험시설 개념설계)

  • 이찬구;박세문;김창락;염유선;이은용
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.245-254
    • /
    • 2001
  • The experimental study on disposal cover through the performance test facility offers reliability in the safety of near surface disposal of low and intermediate level radioactive waste. To ensure the long-term safety of the repository, the impermeability, integrity, resistance to degradation and ease of maintenance might be considered as the basic performance requirement of the disposal cover. considering the difficulties to meet these performance requirement by using single layer, the disposal cover design which is composed of top layer, middle drainage layer and bottom low permeability layer is schemed for the test facility. The water balance of the cover was evaluated by using HELP code. For the long-term monitoring of the soil moisture content and matric potential, TDR probes and tensiometers will be installed in 6 test cells. Each test cell is dimensioned 3$\times$3$\times$3.3m.

  • PDF