• Title/Summary/Keyword: surface code

Search Result 995, Processing Time 0.025 seconds

A constitutive model for fiber-reinforced extrudable fresh cementitious paste

  • Zhou, Xiangming;Li, Zongjin
    • Computers and Concrete
    • /
    • v.8 no.4
    • /
    • pp.371-388
    • /
    • 2011
  • In this paper, time-continuous constitutive equations for strain rate-dependent materials are presented first, among which those for the overstress and the consistency viscoplastic models are considered. By allowing the stress states to be outside the yield surface, the overstress viscoplastic model directly defines the flow rule for viscoplastic strain rate. In comparison, a rate-dependent yield surface is defined in the consistency viscoplastic model, so that the standard Kuhn-Tucker loading/unloading condition still remains true for rate-dependent plasticity. Based on the formulation of the consistency viscoplasticity, a computational elasto-viscoplastic constitutive model is proposed for the short fiber-reinforced fresh cementitious paste for extrusion purpose. The proposed constitutive model adopts the von-Mises yield criterion, the associated flow rule and nonlinear strain rate-hardening law. It is found that the predicted flow stresses of the extrudable fresh cementitious paste agree well with experimental results. The rate-form constitutive equations are then integrated into an incremental formulation, which is implemented into a numerical framework based on ANSYS/LS-DYNA finite element code. Then, a series of upsetting and ram extrusion processes are simulated. It is found that the predicted forming load-time data are in good agreement with experimental results, suggesting that the proposed constitutive model could describe the elasto-viscoplastic behavior of the short fiber-reinforced extrudable fresh cementitious paste.

OPTIMIZATION OF THE PARAMETERS OF FEEDWATER CONTROL SYSTEM FOR OPR1000 NUCLEAR POWER PLANTS

  • Kim, Ung-Soo;Song, In-Ho;Sohn, Jong-Joo;Kim, Eun-Kee
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.460-467
    • /
    • 2010
  • In this study, the parameters of the feedwater control system (FWCS) of the OPR1000 type nuclear power plant (NPP) are optimized by response surface methodology (RSM) in order to acquire better level control performance from the FWCS. The objective of the optimization is to minimize the steam generator (SG) water level deviation from the reference level during transients. The objective functions for this optimization are relationships between the SG level deviation and the parameters of the FWCS. However, in this case of FWCS parameter optimization, the objective functions are not available in the form of analytic equations and the responses (the SG level at plant transients) to inputs (FWCS parameters) can be evaluated by computer simulations only. Classical optimization methods cannot be used because the objective function value cannot be calculated directely. Therefore, the simulation optimization methodology is used and the RSM is adopted as the simulation optimization algorithm. Objective functions are evaluated with several typical transients in NPPs using a system simulation computer code that has been utilized for the system performance analysis of actual NPPs. The results show that the optimized parameters have better SG level control performance. The degree of the SG level deviation from the reference level during transients is minimized and consequently the control performance of the FWCS is remarkably improved.

Optimal design of passive containment cooling system for innovative PWR

  • Ha, Huiun;Lee, Sangwon;Kim, Hangon
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.941-952
    • /
    • 2017
  • Using the Generation of Thermal-Hydraulic Information for Containments (GOTHIC) code, thermal-hydraulic phenomena that occur inside the containment have been investigated, along with the preliminary design of the passive containment cooling system (PCCS) of an innovative pressurized water reactor (PWR). A GOTHIC containment model was constructed with reference to the design data of the Advanced Power Reactor 1400, and report related PCCS. The effects of the design parameters were evaluated for passive containment cooling tank (PCCT) geometry, PCCS heat exchanger (PCCX) location, and surface area. The analyzed results, obtained using the single PCCT, showed that repressurization and reheating phenomena had occurred. To resolve these problems, a coupled PCCT concept was suggested and was found to continually decrease the containment pressure and temperature without repressurization and reheating. If the installation level of the PCCX is higher than that of the PCCT, it may affect the PCCS performance. Additionally, it was confirmed that various means of increasing the external surface area of the PCCX, such as fins, could help improve the energy removal performance of the PCCS. To improve the PCCS design and investigate its performance, further studies are needed.

Ab-initio Study of Hydrogen Permeation though Palladium Membrane (팔라듐 얇은 막의 수소 투과에 대한 제일 원리 계산)

  • Cha, Pil-Ryung;Kim, Jin-You;Seok, Hyun-Kwang;Kim, Yu Chan
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.296-303
    • /
    • 2008
  • Hydrogen permeation through dense palladium-based membranes has attracted the attention of many scientists largely due to their unmatched potential as hydrogen-selective membranes for membrane reactor applications. Although it is well known that the permeation mechanism of hydrogen through Pd involves various processes such as dissociative adsorption, transitions to and from the bulk Pd, diffusion within Pd, and recombinative desorption, it is still unclear which process mainly limits hydrogen permeation at a given temperature and hydrogen partial pressure. In this study, we report an all-electron density-functional theory study of hydrogen permeation through Pd membrane (using VASP code). Especially, we focus on the variation of the energy barrier of the penetration process from the surface to the bulk with hydrogen coverage, which means the large reduction of the fracture stress in the brittle crack propagation considering Griffith's criterion. It is also found that the penetration energy barrier from the surface to the bulk largely decreases so that it almost vanishes at the coverage 1.25, which means that the penetration process cannot be the rate determining process.

A Study on the Estimating Burst Pressure Distributions for Reliability Assessment of API 5L X65 Pipes (API 5L X65 배관의 신뢰도 평가를 위한 파열압력 분포 추정에 관한 연구)

  • Kim, Seong-Jun;Kim, Dohyun;Kim, Cheolman;Kim, Woosik
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.4
    • /
    • pp.597-608
    • /
    • 2020
  • Purpose: The purpose of this paper is to present a probability distribution of the burst pressure of API 5L X65 pipes for the reliability assessment of corroded gas pipelines. Methods: Corrosion is a major cause of weakening the residual strength of the pipe. The mean residual strength on the corrosion defect can be obtained using the burst pressure code. However, in order to obtain the pipe reliability, a probability distribution of the burst pressure should be provided. This study is concerned with estimating the burst pressure distribution using Monte Carlo simulation. A response surface method is employed to represent the distribution parameter as a model of the corrosion defect size. Results: The experimental results suggest that the normal or Weibull distribution should be suitable as the probability distribution of the burst pressure. In particular, it was shown that the probability distribution parameters can be well predicted by using the depth and length of the corrosion defect. Conclusion: Given a corrosion defect on the pipe, its corresponding burst pressure distribution can be provided at instant. Subsequently, a reliability assessment of the pipe is conducted as well.

Constraint-corrected fracture mechanics analysis of nozzle crotch corners in pressurized water reactors

  • Kim, Jong-Sung;Seo, Jun-Min;Kang, Ju-Yeon;Jang, Youn-Young;Lee, Yun-Joo;Kim, Kyu-Wan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1726-1746
    • /
    • 2022
  • This paper presents fracture mechanics analysis results for various cracks located at pressurized water reactor pressure vessel nozzle crotch corners taking into consideration constraint effect. Technical documents such as the ASME B&PV Code, Sec.XI were reviewed and then a fracture mechanics analysis procedure was proposed for structural integrity assessment of various nozzle crotch corner cracks under normal operation conditions considering the constraint effect. Linear elastic fracture mechanics analysis was performed by conducting finite element analysis with the proposed analysis procedure. Based on the evaluation results, elastic-plastic fracture mechanics analysis taking into account the constraint effect was performed only for the axial surface crack of the reactor pressure vessel outlet nozzle with cladding. The fracture mechanics analysis result shows that only the axial surface crack in the reactor pressure vessel outlet nozzle has the stress intensity factor exceeding the low bound of upper-shelf fracture toughness irrespectively of considering the constraint effect. It is confirmed that the J-integral for the axial crack of the outlet nozzle does not exceed the ductile crack initiation toughness. Hence, it can be ensured that the structural integrity of all the cracks is maintained during the normal operation.

Modelling Heat Transfer Through CRUD Deposited on Cladding Tube in UNIST-DISNY Facility (UNIST-DISNY 설비 피복관에 침적된 크러드의 열전달 모델링)

  • Seon Oh YU;Ji Yong Kim;In Cheol Bang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.109-116
    • /
    • 2023
  • This study presents a CRUD modelling to simulate the thermal resistance behavior of CRUD, deposited on the surface of a cladding tube of a fuel assembly. When heat produced from fuels transfers to a coolant through a cladding tube, the CRUD acting as an additional thermal resistance is expressed as two layers, i.e., a solid oxide layer and an imaginary fluid layer, which are added to the experimental tube's heat structure of the MARS-KS input data. The validation calculation for the experiments performed in UNIST-DISNY facility showed that the center and surface temperatures of the cladding tube increased as the porosity and the steam amount inside pores of the CRUD got higher. In addition, the temperature gradient in the imaginary fluid layer was calculated to be larger than that in the solid oxide part, indicating that the steam amount inside the layer acted more largely as thermal resistance. It was also evaluated through sensitivity calculations that the cladding tube temperature was more sensitive to the CRUD porosity and the steam amount in pores than to the inlet flow rate of the coolant.

Boundary layer measurements for validating CFD condensation model and analysis based on heat and mass transfer analogy in laminar flow condition

  • Shu Soma;Masahiro Ishigaki;Satoshi Abe;Yasuteru Sibamoto
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2524-2533
    • /
    • 2024
  • When analyzing containment thermal-hydraulics, computational fluid dynamics (CFD) is a powerful tool because multi-dimensional and local analysis is required for some accident scenarios. According to the previous study, neglecting steam bulk condensation in the CFD analysis leads to a significant error in boundary layer profiles. Validating the condensation model requires the experimental data near the condensing surface, however, available boundary layer data is quite limited. It is also important to confirm whether the heat and mass transfer analogy (HMTA) is still valid in the presence of bulk condensation. In this study, the boundary layer measurements on the vertical condensing surface in the presence of air were performed with the rectangular channel facility WINCS, which was designed to measure the velocity, temperature, and concentration boundary layers. We set the laminar flow condition and varied the Richardson number (1.0-23) and the steam volume fraction (0.35-0.57). The experimental results were used to validate CFD analysis and HMTA models. For the former, we implemented a bulk condensation model assuming local thermal equilibrium into the CFD code and confirmed its validity. For the latter, we validated the HMTA-based correlations, confirming that the mixed convection correlation reasonably predicted the sum of wall and bulk condensation rates.

Reliability Assessment Based on an Improved Response Surface Method (개선된 응답면기법에 의한 신뢰성 평가)

  • Cho, Tae Jun;Kim, Lee Hyeon;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.21-31
    • /
    • 2008
  • response surface method (RSM) is widely used to evaluate th e extremely smal probability of ocurence or toanalyze the reliability of very complicated structures. Althoug h Monte-Carlo Simulation (MCS) technique can evaluate any system, the procesing time of MCS dependson the reciprocal num ber of the probability of failure. The stochastic finite element method could solve thislimitation. However, it is limit ed to the specific program, in which the mean and coeficient o f random variables are programed by a perturbation or by a weigh ted integral method. Therefore, it is not aplicable when erequisite programing. In a few number of stage analyses, RSM can construct a regresion model from the response of the c omplicated structural system, thus, saving time and efort significantly. However, the acuracy of RSM depends on the dist ance of the axial points and on the linearity of the limit stat e functions. To improve the convergence in exact solution regardl es of the linearity limit of state functions, an improved adaptive response surface method is developed. The analyzed res ults have ben verified using linear and quadratic forms of response surface functions in two examples. As a result, the be st combination of the improved RSM techniques is determined and programed in a numerical code. The developed linear adapti ve weighted response surface method (LAW-RSM) shows the closest converged reliability indices, compared with quadratic form or non-adaptive or non-weighted RSMs.

The Legislation of the Part VI (the Carriage by Air) of the Korean Commercial Code (국내 항공운송법 제정안에 관한 고찰)

  • Choi, June-Sun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.23 no.2
    • /
    • pp.3-29
    • /
    • 2008
  • The volume of air passengers and cargo transportation has increased rapidly in recent years. This trend will be even more noticeable as the high-tech service industry expands and the globalization progresses. In an effort to reflect and to cope with this trend, many conventions concerning international air transportation have been concluded. The Republic of Korea has also acceded to the Montreal Convention of 1999 on September 20th, 2007 which became effective on December 29th 2007. However, Korea currently does not provide any private law on the liability of domestic air carrier, leaving the regulation wholly to the general conditions of carriage of private air lines. These general conditions of carriage, however, are not sufficient to regulate the liabilities of domestic air carriers, because they cannot be fully recognized as a legitimate source of law applicable in the court. This situation is inconvenient for both air carrier and their customers. Thus, the Ministry of Justice of Korea has decided to enact a law that will regulate domestic air transportation, namely, "Domestic Carriage by Air Act", as a part of the Korean Commercial Code. So was composed a special committee for legislation of the Domestic Carriage by Air Act. This writer has led the committee as a chairman. The committee has held in total 10 meetings so far and has completed a draft bill for the part VI of the Korean Commercial Code, "Air Carriage." The essentials of the draft are as follows: First, the establishment of Part VI in the Commercial Code. The Korean Commercial Code already includes a series of provisions on road transportation in part II and carriage by sea in part V. In addition to these rules regulating different types of transportation, the Domestic Carriage by Air Act will newly establish part VI to regulate air carriages. Eventually, the Commercial Code will provide an integrated legal system on the transportation industry. Second, the acceptance of the basic liability system which major international conventions, such as Montreal Convention of 1999 and Guadalajara Convention of 1961, have adopted. This is very important, because the law of air carriage is unified worldwide through various international conventions, making it necessary and significant for the new act to achieve conformity between rules of international air carriage and that of domestic air carriage. Third, the acceptance of Rome Convention system on damage caused by foreign aircraft to third parties on the surface. Fourth, the application of rules on domestic road carriage or carriage by sea mutatis mutandis with necessary modifications. This very point is the merit of inserting domestic air transportation law into the Commercial Code. By doing so, the number of articles can be reduced and the rules on air carriage can conform to that of road transportation and carriage by sea. The bill is expected to be passed by the parliament at the end of this year and is expected to be effective by end of July 2009.

  • PDF