• Title/Summary/Keyword: surface chloride concentration

Search Result 245, Processing Time 0.025 seconds

Improving the Initial Effluent Turbidity by Polyaluminium Chloride(PAC) Coating in Rapid Sand Filtration (급속모래여과에서 PAC 피복에 의한 초기 유출수의 탁도 개선)

  • Yoon, Tae-Han;Kim, Woo-Hang
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.3
    • /
    • pp.253-260
    • /
    • 2002
  • The purpose of this research was to describe the mechanisms and prevention of initial degradation in turbidity of the sand filter effluent. The method used was by adding a coagulant (PAC) to the sand filter after backwashing as a means of reducing turbidity. It was found that adding 80 mg/L of PAC solution to the sand filter was very effective in improving the initial effluent turbidity. A turbidity removal efficiency of 99 % was observed in the initial term period as compared to a 70% efficiency without PAC addition. The PAC solution added to the sand filter resulted in high aluminum concentration at the upper layer as compared with the bottom layer of the sand filter column. A change in the zeta potential to a strong positive-ions at upper layer was observed at this time but only a small change was obtained at the bottom. This result showed that the zeta potential of the sand was changed to positive with PAC coating. The effect of pH on zeta potential with PAC addition was also investigated. Zeta potential was greatly changed to positive-ion at pH 4~6. A series of experiments was then conducted in this study to optimize the pH of the PAC solution to be added to the sand filter after backwashing. The removal efficiency of turbidity was found to be highest at pH 5. This result suggested that hydrolyzed aluminium species attached to the surface of the sand enhanced the removal of turbidity of the effluent.

Influence of inorganic compounds on nanofiltration membrane fouling with Al hydrolysis products (알루미늄 수화물 나노여과 막오염에 대한 공존염의 영향에 관한 연구)

  • Choi, Yang-Hun;Kweon, Ji-Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.479-488
    • /
    • 2011
  • Nanofiltration was performed with polyaluminium chloride solutions at different pH conditions to understand effects of inorganic compounds on aluminum hydrolysis products, i.e., three distinctive groups of aluminum species: polymeric Al at low pH; $Al(OH)_3$ at neutral pH; and ${Al(OH)_4}^-$ at high pH. The PACl solution was prepared to be approximately 4.0mM and adjusted to the designated pH. The influence of inorganic compounds on Al species fouling was investigated with 4.9mM $CaCl_2$ and 3.5mM $MgSO_4$ because $Ca^{2+}$, $Mg^{2+}$, $Cl^-$, ${SO_4}^{2-}$ are the most common inorganics in the drinking water. NF membrane fouling was measured by flux decline rate. The impact of $CaCl_2$ was not significant on the individual Al hydrolysis products fouling. However, the flux decline rate was drastically changed in the presence of $MgSO_4$. The concentration of particulate matters was considerably increased possibly due to interaction between Al species and ${SO_4}^{2-}$ where $MgSO_4$ was introduced. The particulates were accumulated on the membrane and enhanced the hydraulic resistance of the cake layer. In addition, conductivity removal of the membrane was decreased when Al-hydroxide was dominant due to reduction of membrane surface charge. The rejection of $Ca^{2+}$and $Mg^{2+}$ were considerably different, which implys that composition of inorganics paly a role on conductivity removal.

Removal of Arsenic in Synthesis Method and Characteristics of Fe(III)-ettringite (비소제거를 위한 Fe(III)-ettringite 합성방법 및 특성 연구)

  • Hong, Seong-Hyeok;Park, Hye-Min;Choi, Won-Ho;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • Arsenic is one of the most abundant contaminant found in waste mine tailings, because of it's carcinogenic property, the countries like United states of America and Europe have made stringent regulations which govern the concentration of arsenic in drinking water. The current study focuses on different treatment methods for removal of arsenic from waste water. Treatment method the high strength arsenic waste water is treated with Fe(III)-ettringite by co-precipitation method. Number of experiments were carried out to decide the optimal dosage of Fe(III)-ettringite to treat arsenic waste water. The Fe(III)-ettringite was synthesized by taking appropriate equivalent ratios of calcium oxide and ferric chloride in proportion to the arsenic. The best removal efficiencies of 94% were observed at a As/(Ca: Fe) ratio of 1:3. The maximum removal of arsenic was observed in pH range of 12. But as the pH increases the arsenic removal efficiency decreases as portlandite is formed in the pH above 12. The analysis of surface of precipitate conform the needle like structure of ettringite. This treatment technique has promising features such as, the chemicals required in the treatment as well as the sludge generated can be reduced. The operating pH range is in alkaline region which is advantageous over traditional treatment process which has lower pH. Also the co-precipitation not only helps in removal of arsenic but also heavy metals.

Electrical Properties and Characterization of 3-Methylthiophene Impregnated Polyurethane films (3-Methylthiophene이 함유된 폴리우레탄 필름의 전기적 특성 연구)

  • Choi, Sei-Young;Choi, Kyo-Chang;Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.39 no.3
    • /
    • pp.234-243
    • /
    • 2004
  • The elastomeric and conductive polyurethane (PU) films were prepared by poly(propylene glycol) (PPG), toluene 2,4-diisocyanate, 3-methylthiophene (3-MT) at various preparation conditions, such as the reaction time, the $FeCl_3$ concentration, the weight ratio of the 3-MT to PU and the reaction temperature for the diffusion-oxidative reaction. The conductive poly (3-methylthiophene) (PMT) layers via the diffusion-oxidative reaction of 3-MT and ferric chloride were formed by immersing the film in organic solution of $FeCl_3$/ethyl acetate. The preparation conditions greatly affected the electrical conductivity of the 3-MT/PU composite. The effects of the reaction time and temperature on morphology and surface free energy were investigated by scanning electron microscopy (SEM) analysis and contact angle measurement, respectively. The conductivity of the composite was as high as 42 S/cm.

Corrosion Behavior of Boiler Tube under Circulation Water Conditions in District Heating System (지역난방 시스템의 순환수에 따른 보일러 튜브의 부식 특성)

  • Hong, Minki;Cho, Jeongmin;Song, Min Ji;Kim, Woo Cheol;Ha, Tae Baek;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.287-291
    • /
    • 2018
  • In this study, corrosion behavior of a SA178-A alloy used in the boiler tube of a district heating system was investigated in different environments where it was exposed to pure water, district heating (DH) water, and filtered district heating (FDH) water. After the corrosion test, the surface morphology was examined for observation of the number of pitting sites and pitting area fraction, using a scanning electron microscope. The DH water and FDH water conditions resulted in a lower corrosion potential and pitting potential, and revealed a significantly higher corrosion rate than the pure water condition. The pitting sites in the DH water (pH 9.6) were approximately eighteen times larger than those in the pure water (pH 9.6). Compared to the DH water, the corrosion potential became more noble in the FDH water condition, where iron ions were reduced through filtration. However, the corrosion rate increased in the FDH water due to an increased concentration of chloride ions, which deteriorated the stability of passive film.

A Study of the Cationization of Bamboo-cotton Blended Fabric (대나무-면 복합직물의 양이온화에 관한 연구)

  • Noh, Young-Ju;Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.24 no.2
    • /
    • pp.260-266
    • /
    • 2022
  • Cellulose fiber is a material used in various fields. It is the most used type of fiber because of its excellent hygroscopicity and dyeability. Recently, as natural fiber materials have been highlighted due to the influence of eco-friendliness and well-being, bamboo fiber has become a commonly used eco-friendly fiber. Cellulose fibers are part of the -OH hydroxyl group, which means they are more chemically reactive than synthetic fibers. In this study, the cationization properties of bamboo-cotton blended fabrics cationized using CHPTAC (3-chloro-2-hydroxypropyl trimethyl ammonium chloride) in the PDC (padding-drying-curing) method were investigated. Various characteristics according to cationization were studied through elemental analysis, FT-IR (fourier-transform infrared spectroscopy) analysis, X-ray diffraction analysis, TGA (thermogravimetric) analysis, and SEM (scanning electron microscope) analysis. The nitrogen content of the cationized bamboo-cotton blended fabric increased with an increase in the concentration of the cationizing agent CHPTAC, and it was seen to be highly bound to cellulose molecules. As a result of the FT-IR analysis, both 100% pure cotton fabrics and CHPTAC-0 and CHPTAC-150 fabrics were seen to be typical cellulose. As a result of the X-ray diffraction analysis, both 100% pure cotton fabrics and CHPTAC-0 and CHPTAC-150 fabrics showed typical cellulose I structures. As a result of the X-ray diffraction analysis, both 100% pure cotton fabrics and CHPTAC-0 and CHPTAC-150 fabrics showed typical cellulose I structures. As the cationization progressed, micropores appeared on the surface of the blended fabric.

A Study on the Precise End-Point Detection in Titration by Using the Phase Angle Measurements (위상각 측정에 의한 적정의 정확한 종말점 검출법에 관한 연구)

  • Park, Byung-Bin;Shin, Ho-Sang;Lee, Han-Hyoung
    • Analytical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.290-298
    • /
    • 1999
  • A study on the application of impedance phase angle for redox titration, acid-base titration, chelate titration and precipitation titration has been carried out. A constant alternating current was passed between two platinum electrodes. One of them was a polarizable micro-electrode of $0.1cm^2$ or $0.026cm^2$ surface area and the other a non-polarizable large electrode of $1cm^2$ surface area dipped in the solution to be titrated. The impedance and the phase angle of the titration cell were measured with lock-in amplifier to obtain well behaved titration curve respectively. In titration of oxalic acid vs. potassium permanganate, the end-point was obtained successfully from the phase angle titration curve. In this experiment, the concentration of 0.0005 M to 0.05 M, the current of $50{\mu}A$ and the frequency of near 50 Hz were used. In titration of phosphoric acid vs. sodium hydroxide, the first end-point was obtained successfully on the optimum experimental condition of 0.001 M concentration, $50{\mu}A$ current and 25~97 Hz frequency. However, the end-point in titration of cupric sulfate vs. disodium-EDTA couldn't be obtained clearly. The end-point was obtained with the out-of-phase impedance curve on the experimental condition of 0.01 M concentration, $100{\mu}A$ current, 5~35 Hz frequency range. In titration of sodium chloride vs. silver nitrate, the end-point was obtained successfully on the experimental condition of 0.1 M concentration, $100{\mu}A$ current and 5~47 Hz frequency range. This study showed that the impedance phase angle was applicable for the detection of the end-points in redox titration curve, acid-base titration curve, chelate titration curve and precipitation titration curve.

  • PDF

Leachate Treatment using Intermittently Aerated BAC-Fluidizing Bed (간헐폭기 생물활성탄 유동상에 의한 매립지침출수 처리)

  • Kim, Kyu Yeon;Lee, Dong Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.136-147
    • /
    • 2005
  • Leachate from landfill sites contains high organics, chloride and ammonium nitrogen in concentration which might be potentially major pollutants to surface and groundwater environment. Most of landfill leachate treatment plants in Korea consist of biological processes to remove BOD and nitrogen. However, the efficiencies of refractory organics removal, nitrification and denitrification have not met frequently the national effluent regulation of wastewater treatment facility, especially in winter season. Simultaneous removal of organics and nitrogen from leachate is strongly necessitated to meet the national regulation on effluents from leachate treatment facilities. The intermittently aerated biological activated carbon fluidized bed(IABACFB) process was applied to treat real landfill leachates containing refractory organics and high concentration of ammonium nitrogen. The IABACFB reactor consisted of a single bed in which BAC fluidizing and an aerating column. The fluidized bed is intermittently aerated through the blower located at the aerating column. Experiments were performed to evaluate the applicability of Intermittently Aerated BACFB for simultaneous removal of refractory organic carbon and ammonium nitrogen of leachate. Organics and ammonia nitrogen($NH{_4}{^+}-N$)are oxidized during the aerobic stage, and nitrite-nitrate nitrogen($NO{_x}{^-}-N$) are removed to nitrogen gas through denitrification reaction during anoxic state. The IABACFB reactor condition reached a steady state within 40 days since the reactors had been operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) simultaneously than the mode of 30 min.-On/90 min.-OFF. The average removal efficiencies of TOC, the refractory organic carbon, and the average efficiencies of nitrification and denitrification were 90%, 75%, 80%, 95%, respectively.

  • PDF

A Study on the Adsorption and Desorption Characteristics of Metal-Impregnated Activated Carbons with Metal Precursors for the Regeneration and Concentration of Ammonia (암모니아의 재생 및 농축을 위한 금속 전구체에 따른 금속 첨착 활성탄의 흡착 및 탈착 특성에 관한 연구)

  • Cho, Gwang Hee;Park, Ji Hye;Rasheed, Haroon Ur;Yoon, Hyung Chul;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.137-144
    • /
    • 2020
  • Metal-impregnated activated carbons were prepared via ultrasonic-assisted impregnation method for regeneration and low ammonia concentration. Magnesium and copper were selected as metals, while chloride (Cl-) and nitrate (NO3-) precursors were used to impregnate the surface of activated carbon. The physical and chemical properties of the prepared adsorbents were characterized by TGA, BET, and NH3-TPD. The ammonia breakthrough test was carried out using a fixed bed and flowing ammonia gas (1000 mg L-1 NH3, balanced N2) at 100 mL min-1, under conditions of temperature swing adsorption (TSA) and pressure swing adsorption (PSA, 0.3, 0.5, 0.7, 0.9 Mpa). The adsorption and desorption performance of ammonia were in the order of AC-Mg(Cl) > AC-Cu(Cl) > AC-Mg(N) > AC-Cu(N) > AC through NH3-TPD and TSA and PSA processes. AC-Mg(Cl) using MgCl2 showed the average adsorption amount of 2.138 mmol/g at TSA process. Also, AC-Mg(Cl) showed the highest initial adsorption amount of 3.848 mmol/g at PSA 0.9 Mpa. When metal impregnated the surface of the activated carbon, it was confirmed that not only physical adsorption, but also chemical adsorption increased, making enhancement in adsorption and desorption performances possible. Also, the prepared adsorbents showed stable adsorption and desorption performances despite repeated processes, confirming their applicability in the TSA and PSA processes.

Loss of Metalworking Fluids Collected on PVC Filter Due to Contact with Clean Air and Desiccation (PVC필터에 채취된 절삭유의 손실에 관한 연구)

  • Park, Dong-Uk;Ha, Kwon-Chul
    • Analytical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.451-457
    • /
    • 2001
  • Because liquids with high molecular weight such as mineral oil have low vapor pressure at room temperature, it is generally thought to be difficult to lose them to evaporation. However, when they are dispersed into air in small droplets during application in machining processes, their surface area becomes considerably higher. To determine the potential for metalworking fluids (MWF) filter losses, MWF mist was generated and collected on polyvinyl chloride (PVC) filters in test chamber. After collected MWF was exposed to clean air during designated period (range 10~240 minutes) and the filters were desiccated, losses were evaluated. As duration of clean air passing through PVC filter increased, loss of MWF gradually increased. MWF lost after 10 minutes ranged form 12.4 % to 21.8 % of the original loading mass, on average 53.3 % of the total loss. These results indicate that significant mass of MWF collected on PVC filters can be lost at the beginning of air sampling. Loss of MWF collected on PVC filter also occurred during desiccation without active airflow. In multiple regression to identify which factors influence the loss of MWF collected on PVC filter, both duration of air passing through PVC filter and MWF age (fresh vs. used) were significant predictor (p=0.0001). Therefore, workers' exposure to MWF measured method 0500, may underestimate true concentration. Further study is needed to develop a new method to quantify the workers' exposure to airborne MWF mist accurately.

  • PDF