• Title/Summary/Keyword: surface chain orientation

Search Result 23, Processing Time 0.021 seconds

Anchoring and Alignment Behavior of Liquid Crystals on Poly(vinyl cinnamate) Thin Films Treated in Various Ways

  • Lee, Taek-Joon;Hahm, Suk-Gyu;Lee, Seung-Woo;Ree, Moon-Hor
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.240-240
    • /
    • 2006
  • Thin films of poly(vinyl cinnamate) (PVCi) were prepared on indium tin oxide (ITO) glass and silicon substrates by conventional spin coating and subsequent drying process. The thicknesses of the films ranged 50-120 nm. The films' surface was treated by rubbing, ultraviolet exposure or their combinations in various ways with changing rubbing strength and exposure dose. These films were examined in detail in the aspects of surface morphology and chain orientation. Further, the anchoring and orientation behaviors of liquid crystals on the film surfaces were investigated. All the results will be discussed in detail.

  • PDF

Effects of Thermal Imidization and Annealing on Liquid Crystal Alignment ever Rubbed Polyimide Layers: Change in the Pretilt Angle

  • Paek, Sang-Hyon
    • Macromolecular Research
    • /
    • v.9 no.6
    • /
    • pp.303-312
    • /
    • 2001
  • The fabrication of liquid crystal display (LCD) panels involves several thermal processes such as imidization of the alignment layer (AL) and annealing of the rubbed polyimide AL. The nature of these processes on the LC alignment, especially on the pretilt angle (Θ$\_$p/) has been systematically studied, employing various types of polyimide structures. The imidization effect depends on the nature of polyimid precursors; Θ$\^$p/ increases with the degree of the imidization for the main-chain type of ALs, due to the decrease in the surface polarity, but this relation is not applicable to the alkylated ones in which the steric effect at the AL surface by the aliphatic side chains is dominant. Annealing of the rubbed polyimide AL deteriorates its rubbing-induced molecular orientation and subsequently the overlying LC alignment, resulting in the decrease in Θ$\_$p/. Especially, annealing of the LC cell affects the LC-AL interaction as well as the AL orientation and thus its effect on LC alignment depends sensitively on the nature of LC-polyimide interface; aromatic moiety in the polyimide structure gives better thermal stability of LC alignment while fluorinated polyimide ALs induce the less stable alignment.

  • PDF

Conformation of single polymer molecule in a slot coating flow

  • Lee, Jeong-Yong;Ryu, Bo-Kyung;Lee, Joo-Sung;Jung, Hyun-Wook;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.2
    • /
    • pp.89-94
    • /
    • 2008
  • To satisfy good mechanical and optical properties of polymer-coated film products, it will be indispensable to elucidate the molecular orientation of polymer chains within coating liquids in coating flows. Using hybridized numerical method between computational fluid dynamics (CFD) and Brownian dynamics (BD) simulations can provide the useful information for the better quality control of coated films. Flexible polymer chains, e.g., ${\lambda}$-DNA molecules here, change their conformation according to the flow strength and the flow type. The molecular conformation within the coated film on the web or substrate is quite different, because the polymer chains experience the complicated flow strength and flow types in flow field. Especially in the slot coating flow, these chains are more extended by the extension-like flow field generated in the free surface curvature just beyond the downstream die region. Also, the polymer chain extension beneath the free surface can be affected by the die geometry, e.g., the coating gap, changing flow field.

Corrosion Prediction of Metallic Cultural Heritage Assets by EIS

  • Angelini, E.;Grassini, S.;Parvis, M.;Zucchi, F.
    • Corrosion Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.121-128
    • /
    • 2019
  • Electrochemical Impedance Spectroscopy (EIS) was used to predict corrosion behaviour of metallic Cultural Heritage assets in two monitoring campaigns: 1) an iron bar chain exposed indoor from over 500 years in the Notre Dame Cathedral in Amiens (France); and 2) a large weathering steel sculpture exposed outdoor from tens of years in Ferrara (Italy). The EIS portable instrument employed was battery operated. In situ EIS measurements on the iron chain could be used to investigate the phenomena involved in the electrochemical interfaces among various corrosion products and assess and predict their corrosion behaviour in different areas of the Cathedral. Meanwhile, the sculpture of weathering steel, like most outdoor artefacts, showed rust layers of different chemical composition and colour depending on the orientation of metal plates. The EIS monitoring campaign was carried out on different areas of the artefact surface, allowing assessment of their protective effectiveness. Results of EIS measurements evidenced how employing a simple test that could be performed in situ without damaging the artefacts surface is possible to quickly gain knowledge of the conservation state of an artefact and highlight potential danger conditions.

Ferroelectric P(VDF/TrFE) Copolymers in Low-Cost Non-Volatile Data Storage Applications

  • Prabu A. Anand;Lee, Jong-Soon;Chang You-Min;Kim, Kap-Jin
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.237-237
    • /
    • 2006
  • P(VDF/TrFE(72/28) ultrathin films were used in the fabrication of Metal-Ferroelectric polymer-Metal (MFM) single bit device with special emphasis on uniform film surface, faster dipole switching time under applied external field and longer memory retention time. AFM and FTIR-GIRAS were complementary in analyzing surface crystalline morphology and the resultant change in chain orientation with varying thermal history. DC-EFM technique was used to 'write-read-erase' the data on the memory bit in a much faster time than P-E studies. The results obtained from this study will enable us to have a good understanding of the ferroelectric and piezoelectric behavior of P(VDF/TrFE)(72/28) thin films suitable for high density data storage applications.

  • PDF

Femtosecond laser induced photo-expansion of organic thin films

  • Chae, Sang-Min;Lee, Myeong-Su;Choe, Ji-Yeon;Lee, Hyeon-Hwi;Kim, Hyo-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.120.2-120.2
    • /
    • 2015
  • We propose a novel direct writing technique with a femtosecond laser enabling selective modification of not only the morphology of conducting polymer thin films but also the orientation and alignment of the polymer crystal. Surface relief gratings resulting from photoexpansion on P3HT:PCBM and PEDOT:PSS thin films were fabricated by femtosecond laser direct writing. The photoexpansion was induced at laser fluence below the ablation threshold of the thin film. The morphology (size and shape) of photoexpansion could be quantitatively controlled by laser writing parameters such as focused beam size, writing speed, and laser fluence. GIWAX results showed that face-on P3HT crystals were largely increased in the photoexpansion in comparison with pristine region of the thin film. In addition, the face-on P3HTs in the photoexpansion were aligned with their orientation along the polarization of the laser. The micro-RAMAN spectra confirmed that neither chemical composition change nor the polymer chain breaking was observable after femtosecond laser irradiation. We believe that this laser direct writing technique opens a new door to the fabrication of more efficient OPVs via non-contact, toxic-free approach.

  • PDF

Effects of UV Irradation on the Alignment of Liquid Crystal (러빙배향된 액정셀에 대한 자외선 조사효과)

  • Kim, Young-Sik;Kim, Jae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.324-327
    • /
    • 2001
  • Liquid crystal alignments on a rubbed polyimide layer were investigated by using optical transmission method. Using this technique, we also studied the pretilt angle of the polymer molecules near the surface of a side-chain polymer layer as a function of the rubbing strength. In particular, we obtained the optical characteristics of liquid crystal orientations and pretilt angles for LC cell photo-aligned by UV as well after rubbing alignment. High pretilt angle of 3.84 degree was obtained on the weekly rubbed polymide layer duribg UV irradation time of 60min.

  • PDF

Effects of UV Irradation on the Alignment of Liquid Crystal (러빙배향된 액정셀에 대한 자외선 조사효과)

  • 김영식;김재형
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.324-327
    • /
    • 2001
  • Liquid crystal alignments on a rubbed polyimide layer were investigated by using optical transmission method. Using this technique, we also studied the pretilt angle of the polymer molecules near the surface of a side-chain polymer layer as a function of the rubbing strength. In particular, we obtained the optical characteristics of liquid crystal orientations and pretilt angles for LC cell photo-aligned by UV as well after rubbing alignment. High pretilt angle of 3.84 degree was obtained on the weekly rubbed polymide layer during UV irradation time of 60min.

  • PDF

Hydrophilicity and Biodegradability of Polyesteramides (폴리에스테르아미드의 친수성과 생분해성)

  • 김은영;박정희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.7
    • /
    • pp.1270-1280
    • /
    • 2001
  • In this research of biodegradable polymers, it is essential to investigate the relation between biodegradability and molecular structure such as chemical constitution, hydrophilicity, molecular weight, crystallinity, chain orientation, and so on. It is also expected that hydrophilicity of polymer can affect biodegradability because biodegradation occurs with the help of enzymes and microorganisms. This study is to investigate the effect of hydrophilicity on biodegradability of polyesters. Hydrophilicity was varied by adding 5~30 mol% of amide groups, since amide groups are hydrophilic and used for improving thermal and mechanical properties. Surface energies and nitrogen contents by ESCA were measured to determine their hydrophilicity. The biodegradation was examined in activated sludge, enzyme and natural soil by $CO_2$evolution, TOC, weight loss, and observation through microscopy. The results showed that hydrophilicity of polyesteramide films increased with the addition of amide, PBAD series of shorter methylene units showed maximum hydrophilicity at 15~20 mol% of amide contents, but PBSE exhibited maximum values at 5~15 mol% of amide contents. The biodegradability increased as the hydrophilicty on surface increased. The biodegradation rate of PBAD series was higher than that of PBSE series. Therefore, it can be concluded that the addition of appropriate contents of hydrophile enhanced the biodegradability of aliphatic polyesters as well as their physical properties. Also, the experimental results revealed the relation between hydrophilicity and biodegradability of polyesteramides.

  • PDF

Sulfonated Poly(ethylene glycol) Containing Methacrylate Copolymer Surfaces; Preparation, Characterization and In Vitro Biocompatibility

  • Park, Ki-Dong;Park, Hyung-Dal;Lee, Hee-Jung;Kim, Young-Ha;Tooru Ooya;Nobuhiko Yui
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.342-351
    • /
    • 2004
  • Poly(ethylene glycol) (PEG1K) and sulfonated PEG (PEG1K-SO$_3$) methacrylate (MA) copolymers have been prepared and characterized. The structures of the synthesized copolymers were confirmed by $^1$H and $^{13}$ C NMR spectroscopy and elemental analysis. The bulk characteristics of the copolymers were evaluated by viscosity and thermal analysis. The surface properties of the copolymers were investigated using dynamic contact angle measurements and electron spectroscopy for chemical analysis. The hydrophilicity of the surfaces modified with PEG1KMA or PEG1K-SO$_3$MA increased, possibly as a result of the orientation of the hydrophilic PEG1KMA/PEG1K-SO$_3$MA chains into the water phase. Platelets adhered less to the surfaces of the copolymers than they did to a polyurethane control. In addition, adhesion of platelets to the copolymer surfaces decreased upon increasing the chain density of PEG1KMA and sulfonated PEG1KMA in the copolymers. Both bacterial adhesion and protein adsorption were significantly reduced on the copolymer surfaces and their levels differ depending on the kind of surface or media.